

Agile Data Documentation

Contents:

	Overview
	Simple to learn

	Not a traditional ORM

	Concern Separation
	Class: Field

	Class: Model

	Class: Persistence

	Code Layers
	Domain-Model Code

	Persistence-specific code

	Generic Persistence-code

	Persistence Scaling

	Quickstart
	Requirements

	Core Concepts
	Persistence Domain vs Business Domain

	Class vs In-Line definition

	Model State

	Getting Started
	Adding Fields

	Table Joins

	Understanding Persistence

	References between Models
	One to Many

	Many to Many

	One to One

	Implementation of References

	Actions
	Aggregation actions

	Field-reference actions

	Advanced Use of Actions

	Expressions

	Conclusion

	Introduction to Architectural Design
	The Domain Layer Scope
	The Danger of Raw Queries

	Purity levels of Domain code

	Domain Logic
	Domain Models

	Domain Model Methods

	Domain Model Fields

	Domain Model Relationship

	Persistence backed Domain Logic
	ID Field

	Persistence-specific Code
	Domain Model Expressions

	Persistence Hooks

	DataSet Declaration

	Domain Conditions

	Related DataSets
	Domain Model Actions

	Unique Features of Persistence Layer

	Model
	Understanding Model
	Model object = Data Set

	Model object = meta information

	Domain vs Persistence

	Good naming for a Model

	Initialization
	Fields

	Actions

	Hooks

	Inheritance

	Associating Model with Database

	Populating Data

	Working with selective fields

	Setting and Getting active record data

	Title Field, ID Field and Model Caption
	ID Field

	Title Field

	Model Caption

	Setting limit and sort order

	Typecasting
	Value types
	Undefined type

	Type of IDs

	Supported types

	Types and UI

	Serialization
	Array and Object types

	Loading and Saving (Persistence)
	Associating with Persistence
	Inserting Record with a specific ID

	Type Converting
	Strict Types an Normalization

	Typecasting

	Validation

	Multi-column fields

	Dates and Time

	Customizations

	Duplicating and Replacing Records
	Create copy of existing record

	Duplicate then save under a new ID

	Working with Multiple DataSets
	Cloning versus New Instance

	Looking for duplicates

	Archiving Records

	Working with Multiple Persistencies
	Creating Cache with Memcache

	Using Read / Write Replicas

	Archive Copies into different persistence

	Store a specific record

	Actions
	Action Types

	SQL Actions

	SQL Actions on Linked Records

	Action Matrix

	Fetching results
	Iterate through model data
	Keeping models

	Raw Data Fetching

	Fetching data through action

	Comparison of various ways of fetching

	Field
	Purpose of Field
	Field Type

	Basic Properties

	UI Presentation

	Conditions and DataSet
	Basic Usage
	Operations

	Multiple Conditions

	Adding OR Conditions

	Defining your classes

	Vendor-dependent logic
	Field Matching

	Expression Matching

	SQL Expression Matching

	Custom Parameters in Expressions

	Expression as first argument

	Advanced Usage
	Model Scope

	Conditions on Referenced Models

	SQL Extensions
	Default Model Classes
	SQL Field

	SQL Reference

	Expressions

	Transactions

	Custom Expressions

	Actions
	Action: select

	Action: count

	Action: field

	Action: fx

	Stored Procedures
	Compatibility Warning

	as a Model method

	as a Model Field

	as an Action

	as a Temporary Table

	as an Model Source

	Static Persistence
	Usage
	Saving Records

	References
	Persistence

	Safety and Performance
	hasMany Reference

	Dealing with many-to-many references

	Dealing with NON-ID fields

	Concatenating Fields

	Add Aggregate Fields

	Available Aggregation Functions

	Aggregate Expressions
	hasMany / refLink / refModel

	hasOne reference

	Traversing loaded model

	Traversing DataSet

	Importing Fields

	Importing hasOne Title
	User-defined Reference

	Reference Discovery

	Deep traversal

	Reference Aliases

	Various ways to specify options
	References with New Records

	Reference Classes

	Expressions
	Defining Expression

	No-table Model Expression

	Expression Callback

	Model Reloading after Save

	Model from multiple joined tables
	Join Basics
	Strong and Weak joins

	Join relationship definitions

	Method Proxying

	Create and Delete behavior

	Implementation Detail

	SQL-specific joins
	Implementation Details

	Specifying complex ON logic

	Model Aggregates
	Grouping

	Hooks
	Model Operation Hooks
	Example with beforeSave

	Arguments

	Interrupting

	Insert/Update Hooks

	beforeSave, afterSave Hook

	Loading, Deleting

	Hook execution sequence

	How to prevent actions

	onRollback Hook

	Persistence Hooks
	PersistenceSql

	Other Hooks:

	Advanced Topics
	SubTypes
	Best practice for specifying relation type

	Type substitution on loading

	Audit Fields

	Soft Delete
	Soft Delete that overrides default delete()

	Creating Unique Field

	Using WITH cursors

	Creating Many to Many relationship
	1. Create Intermediate Entity - InvoicePayment

	2. Update Invoice and Payment model

	3. How to use

	Creating Related Entity Lookup
	Fallback to default value

	Inserting Hierarchical Data

	Related Record Conditioning

	Narrowing Down Existing References

	Loading and Saving CSV Files
	Setting Up

	Exporting and Importing data from CSV

Indices and tables

	Index

	Search Page

Overview

Agile Data is a unique SQL/NoSQL access library that promotes correct Business
Logic design in your PHP application and implements database access in a
flexible and scalable way.

[image: _images/presentation.png]
 [https://www.youtube.com/watch?v=XUXZI7123B8]
Simple to learn

We have designed Agile Data to be very friendly for those who started programming
recently and teach them correct patterns through clever architectural design.

Agile Data carries the spirit of PHP language in general and gives developer
ability to make choices. The framework can be beneficial even in small
applications, but the true power of Agile Data is realized when it’s paired with
Agile UI or Agile API projects.
(https://github.com/atk4/ui, https://github.com/atk4/api).

Not a traditional ORM

Agile Data implementation has several significant differences to a traditional
ORM (Hibernate / Doctrine style). I will discuss those in more detail further in
documentation, however it’s important to note the reason of not following ORM
pattern:

	More suitable for mapping remote databases

	Give developer control over generated queries

	Better support for Persistence-specific features (e.g. SQL expressions)

	True many-to-many deep traversal and avoiding (explicit eager pre-loading)

	Better aggregation abstraction

To find out more, how Agile Data compares to other PHP data mappers and ORM frameworks, see
https://medium.com/@romaninsh/objectively-comparing-orm-dal-libraries-e4f095de80b5

Concern Separation

Design of Agile Data follows principle of “concern separation”, but all of the
basic functionality is divided into 3 major areas:

	Fields (or Columns)

	DataSets (or Rows)

	Databases (or Persistencies)

Each of the above corresponds to a PHP class, which may use composition principle
to hide implementation details.

By design, you will be able to mix and match any any Field with any Database to
work with your DataSets.

If you have worked with other ORMs, read the following sections to avoid confusion:

Class: Field

	Represent logical data column (e.g. “date_of_birth”)

	Stores column meta-information (e.g. [‘type’ => ‘date’, ‘caption’ => ‘Birth Date’])

	Handles value normalization

	Documentation: Field

Note

Meta-information may be a persistence detail, (Field::actual)
or presentation detail (Field::ui). Field class does not interpret
the value, it only stores it.

Class: Model

	Represent logical Data Set (e.g. Active Users)

	Stores data location and criteria

	Stores list of Fields

	Stores individual row

	Handle operations over single or all records from Data Set

	Documentation: Model

Note

Model object is defined in such a way to contain enough information to
fully provide all information for generic UI, or generic API, and generic
persistence implementations.

Note

Unlike ORMs Model instances are never created during iterating. Also,
in most cases, you never instantiate multiple instances of a model class.

Class: Persistence

	Represent external data storage (e.g. MySQL database)

	Stores connection information

	Translate single or multi-record operations into vendor-specific language

	Type-casts standard data types into vendor-specific format

	Documentation: Persistence

Code Layers

How is code:

select name from user where id = 1

is different to the code?:

$user->load(1)->get('name');

While both achieve similar things, the SQL-like code is what we call
“persistence-specific” code. The second example is “domain model” code. The job
of Agile Data is to map “domain model” code into “persistence-specific” code.

The design and features of Agile Data allow you to perform wider range of
operations, be more expressive and efficient while remaining in “domain model”.

In normal application, all the database operations can be expressed in domain
model without any degradation in performance due to large data volume or higher
database latency.

It’s typical for a web application that uses Agile Data in “domain model” to
execute no more than 3-4 requests per page even for highly complex data pages
(such as dashboards) and without use of stored procedures.

Next I’ll show you how code from different “code layers” may look like:

Domain-Model Code

Code is unaware of physical location of your data or which persistence are you
using:

$user = new User($db);

$user = $user->load(20); // load specific user record into PHP
echo $user->get('name') . ': '; // access field values

$gross = $user->ref('Invoice')
 ->addCondition('status', 'due')
 ->ref('Lines')
 ->action('sum', 'gross')
 ->getOne();
 // get sum of all gross fields for due invoices

Another important aspect of Domain-model code is that fields such as gross or
name can be either a physical values in the database or can be mapped to
expressions (such as vat`+`net).

A typical method of your model class will be written in “domain-model” code.

Note

the actual execution and number of queries may vary based on
capabilities of persistence. The above example executes a total of 2 queries
if used with SQL database.

Persistence-specific code

This is a type of code which may change if you decide to switch from one
persistence to another. For example, this is how you would define gross field
for SQL:

$model->addExpression('gross', ['expr' => '[net] + [vat]']);

If your persistence does not support expressions (e.g. you are using Redis or
MongoDB), you would need to define the field differently:

$model->addField('gross');
$model->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 $m->set('gross', $m->get('net') + $m->get('vat'));
});

When you use persistence-specific code, you must be aware that it will not map
into persistencies that does not support features you have used.

In most cases that is OK as if you prefer to stay with same database type, for
instance, the above expression will still be usable with any SQL vendor, but if
you want it to work with NoSQL, then your solution might be:

if ($model->hasMethod('addExpression')) {
 // method is injected by Persistence
 $model->addExpression('gross', ['expr' => '[net] + [vat]']);
} else {
 // persistence does not support expressions
 $model->addField('gross');
 $model->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 $m->set('gross', $m->get('net') + $m->get('vat'));
 });
}

Generic Persistence-code

A final type of code is also persistence-specific, but it is agnostic to your
data-model. The example would be implementation of aggregation with “GROUP BY”
feature in SQL.

https://github.com/atk4/report/blob/develop/src/GroupModel.php

This code is specific to SQL databases, but can be used with any Model, so in
order to use grouping with Agile Data, your code would be:

$aggregate = new AggregateModel(new Sale($db));
$aggregate->setGroupBy(['contractor_to', 'type'], [// groups by 2 columns
 'c' => ['expr' => 'count(*)'], // defines aggregate formulas for fields
 'qty' => ['expr' => 'sum([])'], // [] refers back to qty
 'total' => ['expr' => 'sum([amount])'], // can specify any field here
]);

Persistence Scaling

Although in most cases you would be executing operation against SQL persistence,
Agile Data makes it very easy to use models with a simpler persistencies.

For example, consider you want to output a “table” to the user using HTML by
using Agile UI:

$table = \Atk4\Ui\Table::addTo($app);

$table->setModel(new User($db));

echo $table->render();

Class \Atk4\Ui\Table here is designed to work with persistencies and models -
it will populate columns of correct type, fetch data, calculate totals if needed.
But what if you have your data inside an array?
You can use PersistenceStatic_ for that:

$table = \Atk4\Ui\Table::addTo($app);

$table->setModel(new User(new Persistence\Static_([
 ['name' => 'John', 'is_admin' => false, 'salary' => 34_400.0],
 ['name' => 'Peter', 'is_admin' => false, 'salary' => 42_720.0],
])));

echo $table->render();

Even if you don’t have a model, you can use Static persistence with Generic
model class to display VAT breakdown table:

$table = \Atk4\Ui\Table::addTo($app);

$table->setModel(new Model(new Persistence\Static_([
 ['VAT_rate' => '12.0%', 'VAT' => 36.0, 'Net' => 300.0],
 ['VAT_rate' => '10.0%', 'VAT' => 52.0, 'Net' => 520.0],
])));

echo $table->render();

It can be made even simpler:

$table = \Atk4\Ui\Table::addTo($app);

$table->setModel(new Model(new Persistence\Static_([
 'John',
 'Peter',
])));

echo $table->render();

Agile UI even offers a wrapper for static persistence:

$table = \Atk4\Ui\Table::addTo($app);

$table->setSource(['John', 'Peter']);

echo $table->render();

Quickstart

Agile Data Framework is built around some unique concepts. Your knowledge of
other ORM, ActiveRecord and QueryBuilder tools could be helpful, but you should
carefully go through the basics if you want to know how to use Agile Data
efficiently.

The distinctive goal for Agile Data is ability to “execute” complex operations
on the database server directly, such as aggregation, sub-queries, joins and
unions but only if the database server supports those operations.

Developer would normally create a declaration like this:

$user->hasMany('Order')->addField('total', ['aggregate' => 'sum']);

It is up to Agile Data to decide what’s the most efficient way to implement
the aggregation. Currently only SQL persistence is capable of constructing
aggregate sub-query.

Requirements

If you wish to try out some examples in this guide, you will need the following:

	PHP 7.4 or above.

	any of supported database - Sqlite, MySQL/MariaDB, PostgreSQL, MSSQL or Oracle

Core Concepts

	Business Model (see Model)

	You define business logic inside your own classes that extend Model.
Each class you create represent one business entity.

Model has 3 major characteristic: Business Logic definition, DataSet mapping
and Active Record.

See: Model

	Persistence (see Loading and Saving (Persistence))

	Object representing a connection to database. Linking your Business Model
to a persistence allows you to load/save individual records as well as
execute multi-record operations (Actions)

For developer, persistence should be a secondary concern, after all it is
possible to switch from one persistence to another and compensate for the
feature differences without major refactoring.

	DataSet (see DataSet)

	A set of physical records stored on your database server that correspond
to the Business Model.

	Active Record (see Setting and Getting active record data)

	Model can load individual record from DataSet, work with it and save it back
into DataSet. While the record is loaded, we call it an Active Record.

	Action (see Actions)

	Operation that Model performs on all of DataSet records without loading
them individually. Actions have 3 main purposes: data aggregation,
referencing and multi-record operations.

Persistence Domain vs Business Domain

[image: _images/bd-vs-pd.png]
It is very important to understand that there are two “domains” when it comes
to your data. If you have used ORM, ActiveRecord or QueryBuilders, you will be
thinking in terms of “Persistence Domain”. That means that you think in terms
of “tables”, “fields”, “foreign keys” and “group by” operations.

In larger application developers does not necessarily have to know the details
of your database structure. In fact - structure can often change and code that
depend on specific field names or types can break.

More importantly, if you decide to store some data in different database either
for caching (memcache), unique features (full-text search) or to handle large
amounts of data (BigData) you suddenly have to carefully consider that in your
application.

Business Domain is a layer that is designed to hide all the logic of data
storage and focus on representing your business model in great detail. In other
words - Business Logic is an API you and the rest of your developer team can use
without concerning about data storage.

Agile Data has a rich set of features to define how Business Domain maps into
Persistence Domain. It also allows you to perform most actions with only
knowledge of Business Domain, keeping the rest of your application independent
from your database choice, structure or patterns.

Class vs In-Line definition

Business model entity in Agile Data is represented through PHP object.
While it is advisable to create each entity in its own class, you do not have
to do so.

It might be handy to use in-line definition of a model. Try the following
inside console:

$m = new Model($db, 'contact_info');
$m->addField('address_1');
$m->addField('address_2');
$m->addCondition('address_1', '!=', null);
$m = $m->loadAny();
$m->get();
$m->executeCountQuery(); // same as ((int) $m->action('count')->getOne())

Next, exit and create file src/Model_ContactInfo.php:

<?php
class Model_ContactInfo extends Model
{
 public $table = 'contact_info';

 protected function init(): void
 {
 parent::init();

 $this->addField('address_1');
 $this->addField('address_2');
 $this->addCondition('address_1', '!=', null);
 }
}

Save, exit and run console again. You can now type this:

$m = new Model_ContactInfo($db);
$m = $m->loadAny();
$m->get();

Note

Should the “addCondition” be located inside model definition or
inside your inline code? To answer this question - think - would
Model_ContactInfo have application without the condition? If yes then
either use addCondition in-line or create 2 classes.

Model State

When you create a new model object, you can change its state to perform
various operations on your data. The state can be broken down into the
following categories:

Persistence

When you create instance of a model (new Model()) you need to specify
Persistence as a parameter. If you don’t you can still use
the model, but it won’t be able to Model::load() or
Model::save() data.

Once model is associated with one persistence, you cannot re-associate it.
Method Model::init() will be executed only after persistence is
known, so that method may make some decisions based on chosen persistence.
If you need to store model inside a different persistence, this is achieved
by creating another instance of the same class and copying data over.
You must however remember that any fields that you have added in-line will
not be recreated.

DataSet (Conditions)

Model object may have one or several conditions applied. Conditions will limit
which records model can load (make active) and save. Once the condition is added,
it cannot be removed for safety reasons.

Suppose you have a method that converts DataSet into JSON. Ability to add
conditions is your way to specify which records to operate on:

public function myexport(\Atk4\Data\Model $m, array $fields = null)
{
 return json_encode($m->export($fields));
}

$m = new Model_User($db);
$m->addCondition('country_id', '2');

myexport($m, ['id', 'username', 'country_id']);

If you want to temporarily add conditions, then you can either clone the model
or use Model::tryLoadBy.

Active Record

Active Record is a third essential piece of information that your model stores.
You can load / unload records like this:

$m = new Model_User($db);
$m = $m->loadAny();

$m->get(); // inside console, this will show you what's inside your model

$m->set('email', 'test@example.com');
$m->save();

You can call $m->isLoaded() to see if there is active record and $m->getId() will
store the ID of active record. You can also un-load the record with $m->unload().

By default no records are loaded and if you modify some field and attempt
to save unloaded model, it will create a new record.

Model may use some default values in order to make sure that your record will
be saved inside DataSet:

$m = new Model_User($db);
$m->addCondition('country_id', 2);
$m->set('username', 'peter');
$m->save();

$m->get(); // will show country_id as 2
$m->set('country_id', 3);
$m->save(); // will generate exception because model you try to save doesn't match conditions set

Other Parameters

Apart from the main 3 pieces of “state” your Model holds there can also be
some other parameters such as:

	order

	limit

	onlyFields

You can also define your own parameters like this:

$m = new Model_User($db, ['audit' => false]);

$m->audit

This can be used internally for all sorts of decisions for model behavior.

Getting Started

It’s time to create the first Model. Open src/Model_User.php which should look
like this:

<?php
class Model_User extends Model
{
 public $table = 'user';

 protected function init(): void
 {
 parent::init();

 $this->addField('username');
 $this->addField('email');

 $j = $this->join('contact_info', 'contact_info_id');
 $j->addField('address_1');
 $j->addField('address_2');
 $j->addField('address_3');
 $j->hasOne('country_id', 'Country');
 }
}

Extend either the base Model class or one of your existing classes (like
Model_Client). Define $table property unless it is already defined by parent
class. All the properties defined inside your model class are considered
“default” you can re-define them when you create model instances:

$m = new Model_User($db, 'user2'); // will use a different table

$m = new Model_User($db, ['table' => 'user2']); // same

Note

If you’re trying those lines, you will also have to
create this new table inside your MySQL database:

create table user2 as select * from user

As I mentioned - Model::init is called when model is associated
with persistence. You could create model and associate it with persistence
later:

$m = new Model_User();

$m->setPersistence($db); // calls $m->invokeInit()

You cannot add conditions just yet, although you can pass in some of the defaults:

$m = new Model_User(null, ['table' => 'user2']);

$m->setPersistence($db); // will use table user2

Adding Fields

Methods Model::addField() and Model::addFields() can
declare model fields. You need to declare them before you are able to use.
You might think that some SQL reverse-engineering could be good at this point,
but this would mimic your business logic after your presentation logic, while
the whole point of Agile Data is to separate them, so you should, at least
initially, avoid using generators.

In practice, Model::addField() creates a new ‘Field’ object and then
links it up to your model. This object is used to store some information about
your field, but it also participates in some field-related activity.

Table Joins

Similarly, Model::join() creates a Join object and stores it in $j.
The Join object defines a relationship between the master Model::table
and some other table inside persistence domain. It makes sure relationship is
maintained when objects are saved / loaded:

$j = $this->join('contact_info', 'contact_info_id');
$j->addField('address_1');
$j->addField('address_2');

That means that your business model will contain ‘address_1’ and ‘address_2’
fields, but when it comes to storing those values, they will be sent into a
different database table and the records will be automatically linked.

Lets once again load up the console for some exercises:

$m = new Model_User($db);

$m = $m->loadBy('username', 'john');
$m->get();

At this point you’ll see that address has also been loaded for the user.
Agile Data makes management of related records transparent. In fact you can
introduce additional joins depending on class. See classes Model_Invoice and
Model_Payment that join table document with either payment or invoice.

As you load or save models you should see actual queries in the console, that
should give you some idea what kind of information is sent to the database.

Adding Fields, Joins, Expressions and References creates more objects and
‘adds’ them into Model (to better understand how Model can behave like a
container for these objects, see documentation on Agile Core Containers [http://agile-core.readthedocs.io/en/develop/container.html]).
This architecture of Agile Data allows database persistence to implement
different logic that will properly manipulate features of that specific
database engine.

Understanding Persistence

To make things simple, console has already created persistence inside variable
$db. Load up console.php in your editor to look at how persistence is set up:

$app->db = Persistence::connect($dsn, $user, $pass);

The $dsn can also be using the PEAR-style DSN format, such as:
“mysql://user:pass@db/host”, in which case you do not need to specify $user and $pass.

For some persistence classes, you should use constructor directly:

$array = [];
$array[1] = ['name' => 'John'];
$array[2] = ['name' => 'Peter'];

$db = new Persistence\Array_($array);
$m = new Model($db);
$m->addField('name');
$m = $m->load(2);
echo $m->get('name'); // Peter

There are several Persistence classes that deal with different data sources.
Lets load up our console and try out a different persistence:

$a = ['user' => [], 'contact_info' => []];
$ar = new Persistence\Array_($a);
$m = new Model_User($ar);
$m->set('username', 'test');
$m->set('address_1', 'street');

$m->save();

var_dump($a); // shows you stored data

This time our Model_User logic has worked pretty well with Array-only
persistence logic.

Note

Persisting into Array or MongoDB are not fully functional as of 1.0
version. We plan to expand this functionality soon, see our development
roadmap [https://github.com/atk4/data#roadmap].

References between Models

Your application normally uses multiple business entities and they can be
related to each-other.

Warning

Do not mix-up business model references with database relations
(foreign keys).

References are defined by calling Model::hasOne() or
Model::hasMany(). You always specify destination model and you can
optionally specify which fields are used for conditioning.

One to Many

Launch up console again and let’s create reference between ‘User’ and ‘System’.
As per our database design - one user can have multiple ‘system’ records:

$m = new Model_User($db);
$m->hasMany('System');

Next you can load a specific user and traverse into System model:

$m = $m->loadBy('username', 'john');
$s = $m->ref('System');

Unlike most ORM and ActiveRecord implementations today - instead of returning
array of objects, Model::ref() actually returns another Model to
you, however it will add one extra Condition. This type of reference traversal
is called “Active Record to DataSet” or One to Many.

Your Active Record was user john and after traversal you get a model with DataSet
corresponding to all Systems that belong to user john. You can use the following
to see number of records in DataSet or export DataSet:

$s->isLoaded();
$s->executeCountQuery();
$s->export();
$s->action('count')->getDebugQuery();

Many to Many

Agile Data also supports another type of traversal - ‘DataSet to DataSet’ or
Many to Many:

$c = $m->ref('System')->ref('Client');

This will create a Model_Client instance with a DataSet corresponding to all
the Clients that are contained in all of the Systems that belong to user john.
You can examine the this model further:

$c->isLoaded();
$c->executeCountQuery();
$c->export();
$c->action('count')->getDebugQuery();

By looking at the code - both MtM and OtM references are defined with ‘hasMany’.
The only difference is the loaded() state of the source model.

Calling ref()->ref() is also called Deep Traversal.

One to One

The third and final reference traversal type is “Active Record to Active Record”:

$cc = $m->ref('country_id');

This results in an instance of Model_Country with Active Record set to the
country of user john:

$cc->isLoaded();
$cc->getId();
$cc->get();

Implementation of References

When reference is added using Model::hasOne() or Model::hasMany(),
the new object is created and added into Model of class ReferenceHasMany
or Reference\HasOne (or Reference\HasOneSql in case you
use SQL database). The object itself is quite simple and you can fetch it from
the model if you keep the return value of hasOne() / hasMany() or call
Model::getReference() with the same identifier later on.
You can also use Model::hasReference() to check if reference exists in model.

Calling Model::ref() will proxy into the ref() method of reference
object which will in turn figure out what to do.

Additionally you can call Model::addField() on the reference model
that will bring one or several fields from related model into your current model.

Finally this reference object contains method Reference::getModel()
which will produce a (possibly) fresh copy of related entity and will either
adjust it’s DataSet or set the active record.

Actions

Since NoSQL databases will always have some specific features, Agile Data uses
the concept of ‘action’ to map into vendor-specific operations.

Aggregation actions

SQL implements methods such as sum(), count() or max() that can offer you some
basic aggregation without grouping. This type of aggregation provides some
specific value from a data-set. SQL persistence implements some of the operations:

$m = new Model_Invoice($db);
$m->executeCountQuery();
$m->action('fx', ['sum', 'total'])->getOne();
$m->action('fx', ['max', 'shipping'])->getOne();

Aggregation actions can be used in Expressions with hasMany references and they
can be brought into the original model as fields:

$m = new Model_Client($db);
$m->getReference('Invoice')->addField('max_delivery', ['aggregate' => 'max', 'field' => 'shipping']);
$m->getReference('Payment')->addField('total_paid', ['aggregate' => 'sum', 'field' => 'amount']);
$m->export(['name', 'max_delivery', 'total_paid']);

The above code is more concise and can be used together with reference declaration,
although this is how it works:

$m = new Model_Client($db);
$m->addExpression('max_delivery', ['expr' => $m->refLink('Invoice')->action('fx', ['max', 'shipping'])]);
$m->addExpression('total_paid', ['expr' => $m->refLink('Payment')->action('fx', ['sum', 'amount'])]);
$m->export(['name', 'max_delivery', 'total_paid']);

In this example calling refLink is similar to traversing reference but instead
of calculating DataSet based on Active Record or DataSet it references the actual
field, making it ideal for placing into sub-query which SQL action is using.
So when calling like above, action() will produce expression for calculating
max/sum for the specific record of Client and those calculation are used inside
an Expression().

Expression is a special type of read-only Field that uses sub-query or a more
complex SQL expression instead of a physical field. (See Expressions and
References)

Field-reference actions

Field referencing allows you to fetch a specific field from related model:

$m = new Model_Country($db);
$m->action('field', ['name'])->get();
$m->action('field', ['name'])->getDebugQuery();

This is useful with hasMany references:

$m = new Model_User($db);
$m->getReference('country_id')->addField('country', 'name');
$m = $m->loadAny();
$m->get(); // look for 'country' field

hasMany::addField() again is a short-cut for creating expression, which you can
also build manually:

$m->addExpression('country', $m->refLink('country_id')->action('field', ['name']));

Advanced Use of Actions

Actions prove to be very useful in various situations. For instance, if you are
looking to add a new user:

$m = new Model_User($db);
$m->set('username', 'peter');
$m->set('address_1', 'street 49');
$m->set('country', 'UK');
$m->save();

Normally this would not work, because country is read-only expression, however
if you wish to avoid creating an intermediate select to determine ID for ‘UK’,
you could do this:

$m = new Model_User($db);
$m->set('username', 'peter');
$m->set('address_1', 'street 49');
$m->set('country_id', (new Model_Country($db))->addCondition('name', 'UK')->action('field', ['id']));
$m->save();

This way it will not execute any code, but instead it will provide expression
that will then be used to lookup ID of ‘UK’ when inserting data into SQL table.

Expressions

Expressions that are defined based on Actions (such as aggregate or field-reference)
will continue to work even without SQL (although might be more performance-expensive),
however if you’re stuck with SQL you can use free-form pattern-based expressions:

$m = new Model_Client($db);
$m->getReference('Invoice')->addField('total_purchase', ['aggregate' => 'sum', 'field' => 'total']);
$m->getReference('Payment')->addField('total_paid', ['aggregate' => 'sum', 'field' => 'amount']);

$m->addExpression('balance', ['expr' => '[total_purchase] + [total_paid]']);
$m->export(['name', 'balance']);

Conclusion

You should now be familiar with the basics of Agile Data. To find more
information on specific topics, use the rest of the documentation.

Agile Data is designed in an extensive pattern - by adding more objects inside
Model a new functionality can be introduced. The described functionality is never
a limitation and 3rd party code or you can add features that Agile Data authors
are not even considered.

Introduction to Architectural Design

Layering is one of the most common techniques that software designers use to
break apart a complicated software system. A modern application would have
three primary layers:

	Presentation - Display of information (HTML generation, UI, API or CLI interface)

	Domain - Logic that is the real point of the system

	Data Source - Communication with databases, messaging systems, transaction
managers, other packages

A persistence mechanism is a way how you save the data from some kind of
in-memory model to the database. Apart from data-bases modern system also use
REST services or interact with caches or files to load/store data.

Due to implementation specifics of the various data sources, making a “universal”
persistence logic that can store Domain objects efficiently is not a trivial task.
Various frameworks implement “Active Record”, “ORM” and “Query Builder” patterns
in attempts to improve data access.

The common problems when trying to simplify mapping of domain logic include:

	Performance
- Traversing references where you deal with millions of related records
- Executing multi-row database operation

	Reduced features
- Inability to use vendor-specific features such as SQL expression syntax
- Derive calculations from multi-row sub-selects
- Tweak persistence-related operations

	Abstraction
- Domain objects are often restricted by database schema
- Difficult to use Domain objects without database connection (e.g. in Unit Tests)

Agile Data implements a fresh concepts that separates your Domain from persistence
cleanly yet manages to solve problems mentioned above.

The concepts implemented by Agile Data framework may require some getting used
to (especially if you used some traditional ORMs or Active Record implementations
before).

Once you learn the concept behind Agile Data, you’ll be able to write “Domain objects”
of your application with ease through a readable code and without impact on your
application performance or feature restrictions.

The Domain Layer Scope

Agile Data is a framework that will allow you to define your Domain objects
and will map them into database of your choice.

You can use Agile Data with SQL (PDO-compatible) vendors, NoSQL (MongoDB) or
memory Arrays. Support for other database vendors can be added through add-ons.

The Danger of Raw Queries

If you still think that writing SQL queries is the most efficient way to work
with database, you are probably not considering other disadvantages of this
approach:

	Parameters you specify to a query need to be escaped

	Complex queries are more difficult to write and debug

	Various parts of your application may want to change query (soft-delete add-on?)

	Optimization in your database may impact your Domain logic and even presentation

	Changing your database vendor or storing object data in cache is harder

	Difficult to maintain code

There are more problems such as difficulty in unit-testing your Domain object
code.

Purity levels of Domain code

Agile Data focuses on creating “patterns” that can live in “Domain” layer.
There are three levels of code “purity”:

	Implement patterns for working with for Domain objects.

	Implement patterns for “persistence-backed” Domain objects.

	Implement extensions for “persisting”

Some of your code will focus on working with Domain object without any concern
about “persistence”. A good example is “Validation”. When you Validate your
Domain object you just need to check field values, you would not even care where
data came from.

Most of your code, however, will assume existence of SOME “persistence”, but
will not rely on anything specific. Calculating total amount of your shopping
basked price is such an operation. Basket items are stored somewhere - array,
SQL or NoSQL and all you need is to calculate sum(amount). You don’t even know
how “amount” field is called in the database.

While most of relational mapping solutions would load all basket items, Agile
Data performs same operations inside database if possible.

Finally - some of your code may rely of some specific database vendor
features. Example would be defining an expression using “IF (expr, val1, val2)”
expression for some field of Domain model or using stored procedure as the
source instead of table.

Agile Data offers you ability to move as much code as possible to the level with
highest “purity”, but even if you have to write chunk of SQL code, you can do
it without compromising cross-vendor compatibility.

Domain Logic

When dealing with Domain logic, you work with a single object.

When we start developing a new application, we first decide on the Model structure.
Think what models your application will use and how they are related. Do not
think in terms of “tables”, but rather think in terms of “objects” and properties
of those objects.

All of those model properties are “declared”.

Domain Models

Congratulations, you have just designed a model layer of your application.
Remember that it had nothing to do with your database structure, right?

	Client

	Order

	Admin

A code to declare a model:

class Model_User extends \Atk4\Data\Model
{
}

class Model_Client extends Model_User
{
}

class Model_Admin extends Model_User
{
}

class Model_Order extends \Atk4\Data\Model
{
}

Domain Model Methods

Next we need to write down various “functions” your application would have to
perform and attribute those to individual models. At the same time think
about object inheritance.

	User
- sendPasswordReminder()

	Client (extends User)
- register()
- checkout()

	Admin (extends User)
- showAuditLog()

	Order

Code:

class Model_Client extends Model_User
{
 public function sendPasswordReminder()
 {
 mail($this->get('email'), 'Your password is: ' . $this->get('password'));
 }
}

At this stage you should not think about “saving” your entries. Think of your
objects as if they would forever exist in your memory. Also don’t bother with
basic actions such as adding new order or deleting order.

Domain Model Fields

Our next step is to define object fields (or properties). Remember that
inheritance is at play here so you can take advantage of OOP:

	User
- name, is_vip, email, password, password_change_date

	Client
- phone

	Admin
- permission_level

	Order
- description, amount, is_paid

Those fields are not just mere “properties”, but have more “meta” information
behind them and that’s why we call them “fields” and not “properties”. A typical
field contain information about field name, caption, type, validation rules,
persistence rules, presentation rules and more. Meta information is optional and
it can be used by automated processes (such as presentation or persistence).

For instance, is_paid has a type(‘boolean’) which means it will be stored as
1/0 in MySQL, but will use true/false in MongoDB. It will be displayed as a
checkbox.
Those decisions are made by the framework and will simplify your life, however
if you want to do things differently, you will still be able to override default
behavior.

Code to declare fields:

class Model_Order extends \Atk4\Data\Model
{
 protected function init(): void
 {
 parent::init();

 $this->addField('description');
 $this->addField('amount')->type('atk4_money');
 $this->addField('is_paid')->type('boolean');
 }
}

Code to access field values:

$order->set('amount', 1200.2);

Domain Model Relationship

Next - references. Think how those objects relate to each-other. Think in terms
of “specific object” and not database relations. Client has many Orders. Order
has one Client.

	User
- hasMany(Client)

	Client
- hasOne(User)

There are no “many-to-many” relationship in Domain Model because relationships
work from a specific record, but more on that later.

Code (add inside init()):

class Model_Client extends Model_User
{
 protected function init(): void
 {
 parent::init();

 $this->hasMany('Order', ['model' => [Model_Order::class]]);
 }
}

class Model_Order extends \Atk4\Data\Model
{
 protected function init(): void
 {
 parent::init();

 $this->hasOne('Client', ['model' => [Model_Client::class]]);

 // addField declarations
 }
}

Persistence backed Domain Logic

Once we establish that Model object and set its persistence layer, we can start
accessing it.
Here is the code:

$order = new Model_Order();
// $order is not linked with persistence

$order = new Model_Order();
$order->setPersistence($db); // same as $order = new Model_Order($db)
// $order is associated with specific persistence layer $db

ID Field

Each object is stored with some unique identifier, so you can load and store
object if you know it’s ID:

$order = $order->load(20);
$order->set('amount', 1200.2);
$order->save();

Persistence-specific Code

Finally, some code may rely on specific features of your persistence layer.

Domain Model Expressions

A final addition to our Domain Model are expressions. Those are the “formulas”
where the value cannot be changed directly, but is actually derived from other
values.

	User
- is_password_expired

	Client
- amount_due, total_order_amount

Here field is_password_expired is the type of expression that is based on the
field password_change_date and system date. In other words the value of this
expression will be different depending on parameter outside of your app.

Field amount_due is a sum of amount for all Orders by specific User for which
condition “is_paid=false” is met. total_order_amount is similar, however there
is no condition on the order.

With all of the above we have finished our “Domain Model” declaration.
We haven’t done any assumptions on where and how data is stored, which vendor we
are using or how we can ensure that expressions will operate.

This is, however, a good point for you to write the initial batch of the code.

Code:

class Model_User extends \Atk4\Data\Model
{
 protected function init(): void
 {
 parent::init();

 $this->addField('password');
 $this->addField('password_change_date');

 $this->addExpression('is_password_expired', [
 'expr' => '[password_change_date] < (NOW() - INTERVAL 1 MONTH)',
 'type' => 'boolean',
]);
 }
}

Persistence Hooks

Hooks can help you perform operations when object is being persisted:

class Model_User extends \Atk4\Data\Model
{
 protected function init(): void
 {
 parent::init();

 // add fields here

 $this->onHookShort(Model::HOOK_BEFORE_SAVE, function () {
 if ($this->isDirty('password')) {
 $this->set('password', encrypt_password($this->get('password')));
 $this->set('password_change_date', $this->expr('now()'));
 }
 });
 }
}

DataSet Declaration

So far we have only looked at a single record - one User or one Order. In
practice our application must operate with multiple records.

DataSet is an object that represents collection of Domain model records that
are persisted:

$order = new Model_Order($db);
$order = $order->load(10);

In scenario above we loaded a specific record. Agile Data does not create a
separate object when loading, instead the same object is re-used. This is done
to preserve some memory.

So in the code above $order is not created for the record, but it can load
any record from the DataSet. Think of it as a “window” into a large table of
Orders:

$sum = 0;
$order = new Model_Order($db);
$order = $order->load(10);
$sum += $order->get('amount');

$order = $order->load(11);
$sum += $order->get('amount');

$order = $order->load(13);
$sum += $order->get('amount');

You can iterate over the DataSet:

$sum = 0;
foreach (new Model_Order($db) as $order) {
 $sum += $order->get('amount');
}

You must remember that the code above will only create a single object and
iterating it will simply make it load different values.

At this point, I’ll jump ahead a bit and will show you an alternative code:

$sum = (new Model_Order($db))->fx0(['sum', 'amount'])->getOne();

It will have same effect as the code above, but will perform operation of
adding up all order amounts inside the database and save you a lot of CPU cycles.

Domain Conditions

If your database has 3 clients - ‘Joe’, ‘Bill’, and ‘Steve’ then the DataSet of
“Client” has 3 records.

DataSet concept lives in “Domain Logic” therefore you can use it safely without
worrying that you will introduce unnecessary bindings into persistence and break
single-purpose principle of your objects:

foreach ($clients as $client) {
 // echo $client->get('name') . "\n";
}

The above is a Domain Model code. It will iterate through the DataSet of
“Clients” and output 3 names. You can also “narrow down” your DataSet by adding
a restriction:

$sum = 0;
foreach ((new Model_Order($db))->addCondition('is_paid', true) as $order) {
 $sum += $order->get('amount');
}

And again it’s much more effective to do this on database side:

$sum = (new Model_Order($db))
 ->addCondition('is_paid', true)
 ->fx0(['sum', 'amount'])
 ->getOne();

Related DataSets

Next, let’s look on the orders of specific user. How would you load orders of a
specific user.
Depending on your past experience you might think about “querying” Order table
with condition on user_id. We can’t do that, because “query”, “table” and
“user_id” are persistence details and we must keep them outside of business logic.
Other ORM solution give you something like this:

$arrayOfOrders = $user->orders();

Unfortunately this has practical performance implications and scalability
constraints. What if your user is having millions of orders? Even with
lazy-loading, you will be operating with million “id” records.

Agile Data implements traversal as a simple operation that converts one DataSet
into another:

$userModel->addCondition('is_vip', true);
$vipOrders = $userModel->ref('Order');

$sum = $vipOrders->fx0(['sum', 'amount'])->getOne();

The implementation of ref() is pretty powerful - $userModel can address 3
users in the database and only 2 of those users are VIP. Typical ORM would
require you to fetch all VIP records and then perform additional queries to find
their orders.

Agile Data, however, perform traversal without accessing database at all.
After ref() is executed, you have a new DataSet with a condition based on
user sub-query. The actual implementation may be different depending on vendor,
but Agile Data will prefer not to fetch list of “user_id”s without need.

Domain Model Actions

Persistence layer in Agile Data uses intelligent mapping of your Domain Logic
into DatabaseVendor-specific operations.

To continue my example from above, I’ll use a query method to calculate number
of orders placed by VIP clients:

$vipOrderCount = $vipOrders->fx(['count'])->getOne();

This code will attempt to execute a single-query only, however the ability to
optimize your request relies on the capabilities of database vendor.
The actual database operation(s) might look like this on SQL database:

select count(*) from `order` where user_id in
 (select id from user where type = "user" and is_vip = 1)

While with MongoDB, the query could be different:

$ids = collections.client.find({'is_vip': true}).field('id');

return collections.order.find({'user_id': $ids}).count();

Finally the code above will work even if you use a simple Array as a data source:

$db = new \Atk4\Data\Persistence\Array_([
 'client' => [
 [
 'name' => 'Joe',
 'email' => 'joe@yahoo.com',
 'Orders' => [
 ['amount' => 10],
 ['amount' => 20],
],
],
 [
 'name' => 'Bill',
 'email' => 'bill@yahoo.com',
 'Orders' => [
 ['amount' => 35],
],
],
],
]);

So getting back to the operation above, lets look at it in more details:

$vipOrderCount = $vipOrders->fx(['count'])->getOne();

While “$vipOrders” is actually a DataSet, executing count() will cross you over
into persistence layer. However this method is returning a new object, which is then
executed when you call getOne(). For SQL persistencies it returns Atk4DataPersistenceSqlQuery
object, for example.

Even though for a brief moment you had your hands on a “database-vendor specific”
object, you have immediately converted Action into an actual value. As result
your code is universal and is not persistence-specific. In Agile Data we permit
code like that in our Domain Model and we call it “Domain Model Action”.

Let me define this properly: Domain Model Action is an operation that can be
executed in your Domain Model layer which assumes existence of SOME Persistence
for your model, but not a specific one.

As long as your Domain Model is restricted to generic Domain Model Actions, it
will not violate SRP (Single Responsibility Principle)

Unique Features of Persistence Layer

More often thannot, your application is designed and built with a specific
persistence layer in mind. If you are using SQL database, you want to

to be continued

Before we talk “databases”, we must outline a few challenges:

	our business model described above should work with various database vendors

	we should be able to perform basic Unit tests on our domain logic

	single vs multiple records

	..add more..

Model

	
class Model

	

Probably the most significant class in ATK Data - Model - acts as a Parent for all your
entity classes:

class User extends \Atk4\Data\Model

You must define individual classes for all your business entities. Other frameworks may rely
on XML or annotations, in ATK everything is defined inside your “Model” class through
pure PHP (See Initialization below)

Once you create instance of your model class, it can be recycled. With a single
object you can load/unload individual records (See Single record Operations below):

$m = new User($db);

$m = $m->load(3);
$m->set('note', 'just updating');
$m->save();
$m->unload();

$m = $m->load(8);
...

and even perform operations on multiple records (See Persistence Actions below).

When data is loaded from associated Persistence, it is automatically converted into
a native PHP type (such as DateTime object) through a process called Typecasting. Various
rules apply when you set value for model fields (Normalization) or when data is stored
into database that does support a field type (Serialization)

Furthermore, because you define Models as a class, it is very easy to introduce your own
extensions which may include Hooks and Actions.

There are many advanced topics that ATK Data covers, such as References, Joins, Aggregation,
SQL actions, Unions, Deep Traversal and Containment.

The design is also very extensible allowing you to introduce new Field types, Join strategies,
Reference patterns, Action types.

I suggest you to read the next section to make sure you fully understand the Model and its role
in ATK Data.

Understanding Model

Please understand that Model in ATK Data is unlike models in other data frameworks. The
Model class can be seen as a “gateway” between your code and many other features of ATK Data.

For example - you may define fields and relations for the model:

$model->addField('age', ['type' => 'integer']);
$model->hasMany('Children', ['model' => [Person::class]]);

Methods addField and hasMany will ultimatelly create and link model with a corresponding
Field object and Reference object. Those classes contain the logic, but in 95% of the use-cases,
you will not have to dive deep into them.

Model object = Data Set

From the moment when you create instance of your model class, it represents a DataSet - set of records
that share some common traits:

$allUsers = new User($db); // John, Susan, Leo, Bill, Karen

Certain operations may “shrink” this set, such as adding conditions:

$maleUsers = $allUsers->addCondition('gender', 'M');

send_email_to_users($maleUsers);

This essentially filters your users without fetching them from the database server. In my example,
when I pass $maleUsers to the method, no records are loaded yet from the database. It is up to
the implementation of send_email_to_users to load or iterate records or perhaps approach the
data-set differently, e.g. execute multi-record operation.

Note that most
operations on Model are mutating (meaning that in example above $allUsers will also be filtered
and in fact, $allUsers and $maleUsers will reference same object. Use clone if you do not wish
to affect $allUsers.

Model object = meta information

By design, Model object does not have direct knowledge of higher level objects or specific
implementations. Still - Model will be a good place to deposit some meta-information:

$model->addField('age', ['ui' => ['caption' => 'Put your age here']]);

Model and Field class will simply store the “ui” property which may (or may not) be used by ATK UI
component or some add-on.

Domain vs Persistence

When you declare a model Field you can also store some persistence-related meta-information:

// override how your persistence formats date field
$model->addField('date_of_birth', ['type' => 'date', 'persistence' => ['format' => 'Ymd']]);

// declare field which is not saved
$model->addField('secret', ['neverPersist' => true]);

// rellocate into a different field
$model->addField('old_field', ['actual' => 'new_field']);

// or even into a different table
$model->join('new_table')->addField('extra_field');

Model also has a property $table, which indicate name of default table/collection/file to be
used by persistence. (Name of property is decided to avoid beginner confusion)

Good naming for a Model

Some parts of this documentation were created years ago and may use class notation: Model_User.
We actually recommend you to use namespaces instead:

namespace yourapp\Model;

use \Atk4\Data\Model;

class User extends Model
{
 protected function init(): void
 {
 parent::init();

 $this->addField('name');

 $this->hasMany('Invoices', ['model' => [Invoice::class]]);
 }
}

PHP does not have a “class” type, so Invoice::class will translate into a string “yourappModelInvoice”
and is a most efficient way to specify related class name.

You way also use new Invoice() there but be sure not to specify any argument, unless you intend
to use cross-persistence referencing (this is further explained in Advanced section)

Initialization

	
Model::init()

	

Method init() will automatically be called when your Model is associated with
Persistence object. It is commonly used to declare fields, conditions, relations, hooks and more:

class Model_User extends Atk4\Data\Model
{
 protected function init(): void
 {
 parent::init();

 $this->addField('name');
 $this->addField('surname');
 }
}

You may safely rely on $this->getPersistence() result to make choices:

if ($this->getPersistence() instanceof \Atk4\Data\Persistence\Sql) {
 // Calculating on SQL server is more efficient!!
 $this->addExpression('total', ['expr' => '[amount] + [vat]']);
} else {
 // Fallback
 $this->addCalculatedField('total', ['expr' => function (self $m) {
 return $m->get('amount') + $m->get('vat');
 }, 'type' => 'float']);
}

To invoke code from init() methods of ALL models (for example soft-delete logic),
you use Persistence’s “afterAdd” hook. This will not affect ALL models but just models
which are associated with said persistence:

$db->onHook(Persistence::HOOK_AFTER_ADD, function (Persistence $p, Model $m) use ($acl) {
 $fields = $m->getFields();

 $acl->disableRestrictedFields($fields);
});

$invoice = new Invoice($db);

Fields

Each model field is represented by a Field object:

$model->addField('name');

var_dump($model->getField('name'));

Other persistence framework will use “properties”, because individual objects may impact
performance. In ATK Data this is not an issue, because “Model” is re-usable:

foreach (new User($db) as $user) {
 // will be the same object every time!!
 var_dump($user->getField['name']);

 // this is also the same object every time!!
 var_dump($user);
}

Instead, Field handles many very valuable operations which would otherwise fall on the
shoulders of developer (Read more here Field)

	
Model::addField($name, $seed)

	

Creates a new field object inside your model (by default the class is ‘Field’).
The fields are implemented on top of Containers from Agile Core.

Second argument to addField() will contain a seed for the Field class:

$this->addField('surname', ['default' => 'Smith']);

You may also specify your own Field implementation:

$this->addField('amount_and_currency', [MyAmountCurrencyField::class]);

Read more about Field

	
Model::addFields(array $fields, $seed = [])

	

Creates multiple field objects in one method call. See multiple syntax examples:

$m->addFields(['name'], ['default' => 'anonymous']);

$m->addFields([
 'last_name',
 'login' => ['default' => 'unknown'],
 'salary' => ['type' => 'atk4_money', CustomField::class, 'default' => 100],
 ['tax', CustomField::class, 'type' => 'atk4_money', 'default' => 20],
 'vat' => new CustomField(['type' => 'atk4_money', 'default' => 15]),
]);

Read-only Fields

Although you may make any field read-only:

$this->addField('name', ['readOnly' => true]);

There are two methods for adding dynamically calculated fields.

	
Model::addExpression($name, $seed)

	

Defines a field as server-side expression (e.g. SQL):

$this->addExpression('total', ['expr' => '[amount] + [vat]']);

The above code is executed on the server (SQL) and can be very powerful.
You must make sure that expression is valid for current $this->getPersistence():

$product->addExpression('discount', ['expr' => $this->refLink('category_id')->fieldQuery('default_discount')]);
// expression as a sub-select from referenced model (Category) imported as a read-only field
// of $product model

$product->addExpression('total', ['expr' => 'if ([is_discounted], ([amount] + [vat])*[discount], [amount] + [vat])']);
// new "total" field now contains complex logic, which is executed in SQL

$product->addCondition('total', '<', 10);
// filter products that cost less than 10.0 (including discount)

For the times when you are not working with SQL persistence, you can calculate field in PHP.

	
Model::addCalculatedField($name[, 'expr' => $callback])

	

Creates new field object inside your model. Field value will be automatically
calculated by your callback method right after individual record is loaded by the model:

$this->addField('term', ['caption' => 'Repayment term in months', 'default' => 36]);
$this->addField('rate', ['caption' => 'APR %', 'default' => 5]);

$this->addCalculatedField('interest', ['expr' => function (self $m) {
 return $m->calculateInterest();
}, 'type' => 'float']);

Important

always use argument $m instead of $this inside your callbacks. If model is to be
cloned, the code relying on $this would reference original model, but the code using
$m will properly address the model which triggered the callback.

This can also be useful for calculating relative times:

class MyModel extends Model
{
 use HumanTiming; // see https://stackoverflow.com/questions/2915864/php-how-to-find-the-time-elapsed-since-a-date-time

 protected function init(): void
 {
 parent::init();

 $this->addCalculatedField('event_ts_human_friendly', ['expr' => function (self $m) {
 return $this->humanTiming($m->get('event_ts'));
 }]);
 }
}

Actions

Another common thing to define inside Model::init() would be
a user invokable actions:

class User extends Model
{
 protected function init(): void
 {
 parent::init();

 $this->addField('name');
 $this->addField('email');
 $this->addField('password');

 $this->addUserAction('send_new_password');
 }

 public function send_new_password()
 {
 // .. code here

 $this->save(['password' => ..]);

 return 'generated and sent password to ' . $m->get('name');
 }
}

With a method alone, you can generate and send passwords:

$user = $user->load(3);
$user->send_new_password();

but using $this->addUserAction() exposes that method to the ATK UI wigets,
so if your admin is using Crud, a new button will be available allowing
passwords to be generated and sent to the users:

Crud::addTo($app)->setModel(new User($app->db));

Read more about ModelUserAction

Hooks

Hooks (behaviours) can allow you to define callbacks which would trigger
when data is loaded, saved, deleted etc. Hooks are typically defined in
Model::init() but will be executed accordingly.

There are countless uses for hooks and even more opportunities to use
hook by all sorts of extensions.

Validation

Validation is an extensive topic, but the simplest use-case would be through
a hook:

$this->addField('name');

$this->onHookShort(Model::HOOK_VALIDATE, function () {
 if ($this->get('name') === 'C#') {
 return ['name' => 'No sharp objects are allowed'];
 }
});

Now if you attempt to save object, you will receive ValidationException:

$model->set('name', 'Swift');
$model->saveAndUnload(); // all good

$model->set('name', 'C#');
$model->saveAndUnload(); // exception here

Other Uses

Other uses for model hooks are explained in Hooks

Inheritance

ATK Data models are really good for structuring hierarchically. Here is example:

class VipUser extends User
{
 protected function init(): void
 {
 parent::init();

 $this->addCondition('purchases', '>', 1000);

 $this->addUserAction('send_gift');
 }

 public function send_gift()
 {
 ...
 }
}

This introduces a new business object, which is a sub-set of User. The new class will
inherit all the fields, methods and actions of “User” class but will introduce one new
action - send_gift.

Associating Model with Database

After talking extensively about model definition, lets discuss how model is associated
with persistence. In the most basic form, model is associated with persistence like this:

$m = new User($db);

If model was created without persistence Model::init() will not fire. You can
explicitly associate model with persistence like this:

$m = new User();

//

$m->setPersistence($db); // links with persistence

Multiple models can be associated with the same persistence. Here are also some examples
of static persistence:

$m = new Model(new Persistence\Static_(['john', 'peter', 'steve']);

$m = $m->load(1);
echo $m->get('name'); // peter

See Persistence\Static_

	
property Model::$persistence

	

Refers to the persistence driver in use by current model. Calling certain
methods such as save(), addCondition() or action() will rely on this property.

	
property Model::$persistenceData

	

DO NOT USE: Array containing arbitrary data by a specific persistence layer.

	
property Model::$table

	

If $table property is set, then your persistence driver will use it as default
table / collection when loading data. If you omit the table, you should specify
it when associating model with database:

$m = new User($db, 'user');

This also overrides current table value.

	
Model::withPersistence($persistence)

	

Creates a duplicate of a current model and associate new copy with a specified
persistence. This method is useful for moving model data from one persistence
to another.

Populating Data

	
Model::insert($row)

	Inserts a new record into the database and returns $id. It does not affect
currently loaded record and in practice would be similar to:

$entity = $m->createEntity();
$entity->setMulti($row);
$entity->save();

return $entity;

The main goal for insert() method is to be as fast as possible, while still
performing data validation. After inserting method will return cloned model.

	
Model::import($data)

	Similar to insert() however works across array of rows. This method will
not return any IDs or models and is optimized for importing large amounts
of data.

The method will still convert the data needed and operate with joined
tables as needed. If you wish to access tables directly, you’ll have to look
into Persistence::insert($m, $data);

Working with selective fields

When you normally work with your model then all fields are available and will be
loaded / saved. You may, however, specify that you wish to load only a sub-set
of fields.

	
Model::setOnlyFields($fields)

	Specify array of fields. Only those fields will be accessible and will be
loaded / saved. Attempt to access any other field will result in exception.

Null restore to full set of fields. This will also unload active record.

	
property Model::$onlyFields

	Contains list of fields to be loaded / accessed.

Setting and Getting active record data

When your record is loaded from database, record data is stored inside the $data
property:

	
property Model::$data

	Contains the data for an active record.

Model allows you to work with the data of single a record directly. You should
use the following syntax when accessing fields of an active record:

$m->set('name', 'John');
$m->set('surname', 'Peter');
// or
$m->setMulti(['name' => 'John', 'surname' => 'Peter']);

When you modify active record, it keeps the original value in the $dirty array:

	
Model::set($field, $value)

	Set field to a specified value. The original value will be stored in
$dirty property.

	
Model::setMulti($fields)

	Set multiple field values.

	
Model::setNull($field)

	Set value of a specified field to NULL, temporarily ignoring normalization routine.
Only use this if you intend to set a correct value shortly after.

	
Model::unset($field)

	Restore field value to it’s original:

$m->set('name', 'John');
echo $m->get('name'); // John

$m->_unset('name');
echo $m->get('name'); // Original value is shown

This will restore original value of the field.

	
Model::get()

	Returns one of the following:

	If value was set() to the field, this value is returned

	If field was loaded from database, return original value

	if field had default set, returns default

	returns null.

	
Model::isset()

	Return true if field contains unsaved changes (dirty):

$m->_isset('name'); // returns false
$m->set('name', 'Other Name');
$m->_isset('name'); // returns true

	
Model::isDirty()

	Return true if one or multiple fields contain unsaved changes (dirty):

if ($m->isDirty(['name', 'surname'])) {
 $m->set('full_name', $m->get('name') . ' ' . $m->get('surname'));
}

When the code above is placed in beforeSave hook, it will only be executed
when certain fields have been changed. If your recalculations are expensive,
it’s pretty handy to rely on “dirty” fields to avoid some complex logic.

	
property Model::$dirty

	Contains list of modified fields since last loading and their original
values.

	
Model::hasField($field)

	Returns true if a field with a corresponding name exists.

	
Model::getField($field)

	Finds a field with a corresponding name. Throws exception if field not found.

Full example:

$m = new Model_User($db, 'user');

// Fields can be added after model is created
$m->addField('salary', ['default' => 1000]);

echo $m->_isset('salary'); // false
echo $m->get('salary'); // 1000

// Next we load record from $db
$m = $m->load(1);

echo $m->get('salary'); // 2000 (from db)
echo $m->_isset('salary'); // false, was not changed

$m->set('salary', 3000);

echo $m->get('salary'); // 3000 (changed)
echo $m->_isset('salary'); // true

$m->_unset('salary'); // return to original value

echo $m->get('salary'); // 2000
echo $m->_isset('salary'); // false

$m->set('salary', 3000);
$m->save();

echo $m->get('salary'); // 3000 (now in db)
echo $m->_isset('salary'); // false

	
protected Model::normalizeFieldName()

	Verify and convert first argument got get / set;

Title Field, ID Field and Model Caption

Those are three properties that you can specify in the model or pass it through
defaults:

class MyModel ..
 public ?string $titleField = 'full_name';

or as defaults:

$m = new MyModel($db, ['titleField' => 'full_name']);

ID Field

	
property Model::$idField

	If your data storage uses field different than id to keep the ID of your
records, then you can specify that in $idField property.

ID value of loaded entity cannot be changed. If you want to duplicate a record,
you need to create a new entity and save it.

Title Field

	
property Model::$titleField

	This field by default is set to ‘name’ will act as a primary title field of
your table. This is especially handy if you use model inside UI framework,
which can automatically display value of your title field in the header,
or inside drop-down.

If you don’t have field ‘name’ but you want some other field to be title,
you can specify that in the property. If titleField is not needed, set it
to false or point towards a non-existent field.

See: :php:meth::hasOne::addTitle()

	
public Model::getTitle()

	Return title field value of currently loaded record.

	
public Model::getTitles()

	Returns array of title field values of all model records in format [id => title].

Model Caption

	
property Model::$caption

	This is caption of your model. You can use it in your UI components.

	
public Model::getModelCaption()

	Returns model caption. If caption is not set, then try to generate one from
model class name.

Setting limit and sort order

	
public Model::setLimit($count, $offset = null)

	Sets limit on how many records to select. Will select only $count records
starting from $offset record.

	
public Model::setOrder($field, $desc = null)

	Sets sorting order of returned data records. Here are some usage examples.
All these syntaxes work the same:

$m->setOrder('name, salary desc');
$m->setOrder(['name', 'salary desc']);
$m->setOrder(['name', 'salary' => true]);
$m->setOrder(['name' => false, 'salary' => true]);
$m->setOrder([['name'], ['salary', 'desc']]);
$m->setOrder([['name'], ['salary', true]]);
$m->setOrder([['name'], ['salary desc']]);
// and there can be many more similar combinations how to call this

Keep in mind - true means desc, desc means descending. Otherwise it will be ascending order by default.

You can also use Atk4DataPersistenceSqlExpression or array of expressions instead of field name here.
Or even mix them together:

$m->setOrder($m->expr('[net] * [vat]'));
$m->setOrder([$m->expr('[net] * [vat]'), $m->expr('[closing] - [opening]')]);
$m->setOrder(['net', $m->expr('[net] * [vat]', 'ref_no')]);

Typecasting

Typecasting is evoked when you are attempting to save or load the record.
Unlike strict types and normalization, typecasting is a persistence-specific
operation. Here is the sequence and sample:

$m->addField('birthday', ['type' => 'date']);
// type has a number of pre-defined values. Using 'date'
// instructs AD that we will be using it for staring dates
// through 'DateTime' class.

$m->set('birthday', 'Jan 1 1960');
// If non-compatible value is provided, it will be converted
// into a proper date through Normalization process. After
// this line value of 'birthday' field will be DateTime.

$m->save();
// At this point typecasting converts the "DateTime" value
// into UTC date-time representation for SQL or "MongoDate"
// type if you're persisting with MongoDB. This does not affect
// value of a model field.

Typecasting is necessary to save the values inside the database and restore
them back just as they were before. When modifying a record, typecasting will
only be invoked on the fields which were dirty.

The purpose of a flexible typecasting system is to allow you to store your date
in a compatible format or even fine-tune it to match your database settings
(e.g. timezone) without affecting your domain code.

You must remember that type-casting is a two-way operation. If you are
introducing your own types, you will need to make sure they can be saved and
loaded correctly.

Some types such as boolean may support additional options like:

$m->addField('is_married', [
 'type' => 'boolean',
 'enum' => ['No', 'Yes'],
]);

$m->set('is_married', 'Yes'); // normalizes into true
$m->set('is_married', true); // better way because no need to normalize

$m->save(); // stores as "Yes" because of type-casting

Value types

Any type can have a value of null:

$m->set('is_married', null);
if (!$m->get('is_married')) {
 // either null or false
}

If value is passed which is not compatible with field type, Agile Data will try
to normalize value:

$m->addField('age', ['type' => 'integer']);
$m->addField('name', ['type' => 'string']);

$m->set('age', '49.8');
$m->set('name', ' John');

echo $m->get('age'); // 49 - normalization cast value to integer
echo $m->get('name'); // 'John' - normalization trims value

Undefined type

If you do not set type for a field, Agile Data will not normalize and type-cast
its value.

Because of the loose PHP types, you can encounter situations where undefined
type is changed from ‘4’ to 4. This change is still considered “dirty”.

If you use numeric value with a type-less field, the response from SQL does
not distinguish between integers and strings, so your value will be stored as
“string” inside the model.

The same can be said about forms, which submit all their data through POST
request that has no types, so undefined type fields should work relatively
good with the standard setup of Agile Data + Agile Toolkit + SQL.

Type of IDs

Many databases will allow you to use different types for ID fields.
In SQL the ‘id’ column will usually be “integer”, but sometimes it can be of
a different type.

The same applies for references ($m->hasOne()).

Supported types

	‘string’ - for storing short strings, such as name of a person. Normalize will trim the value.

	‘text’ - for storing long strings, suchas notes or description. Normalize will trim the value.

	‘boolean’ - normalize will cast value to boolean.

	‘integer’ - normalize will cast value to integer.

	‘atk4_money’ - normalize will round value with 4 digits after dot.

	‘float’ - normalize will cast value to float.

	‘date’ - normalize will convert value to DateTime object.

	‘datetime’ - normalize will convert value to DateTime object.

	‘time’ - normalize will convert value to DateTime object.

	‘json’ - no normalization by default

	‘object’ - no normalization by default

Types and UI

UI framework such as Agile Toolkit will typically rely on field type information
to properly present data for views (forms and tables) without you having to
explicitly specify the ui property.

Serialization

Some types cannot be stored natively. For example, generic objects and arrays
have no native type in SQL database. This is where serialization feature is used.

Field may use serialization to further encode field value for the storage purpose:

$this->addField('private_key', [
 'type' => 'object',
 'system' => true,
]);

Array and Object types

Some types may require serialization for some persistencies, for instance types
‘json’ and ‘object’ cannot be stored in SQL natively. json type can be used
to store these in JSON.

This is handy when mapping JSON data into native PHP structures.

Loading and Saving (Persistence)

	
class Model

	

Model object represents your real-life business objects such as “Invoice” or “Client”.
The rest of your application works with “Model” objects only and have no knowledge of
what database you are using and how data is stored in there. This decouples your app
from the data storage (Persistence). If in the future you will want to change database
server or structure of your database, you can do it without affecting your application.

Data Persistence frameworks (like ATK Data) provide the bridge between “Model” and the
actual database. There is balance between performance, simplicity and consistency. While
other persistence frameworks insist on strict isolation, ATK Data prefers practicality
and simplicity.

ATK Data couples Model and Persistence, they have some intimate knowledge of each-other
and work as a unit. Persistence object is created first and by the time Model is created,
you specify persistence to the model.

During the lifecycle of the Model it can work with various records, save, load, unload data
etc, but it will always remain linked with that same persistence.

Associating with Persistence

Create your persistence object first:

$db = \Atk4\Data\Persistence::connect($dsn);

There are two ways to link your model up with the persistence:

$m = new Model_Invoice($db);

$m = new Model_Invoice();
$m->setPersistence($db);

	
Model::load()

	Load active record from the DataSet:

$m = $m->load(10);
echo $m->get('name');

If record not found, will throw exception.

	
Model::save($data = [])

	Store active record back into DataSet. If record wasn’t loaded, store it as
a new record:

$m = $m->load(10);
$m->set('name', 'John');
$m->save();

You can pass argument to save() to set() and save():

$m->unload();
$m->save(['name' => 'John']);

	
Model::tryLoad()

	Same as load() but will return null if record is not found:

$m = $m->tryLoad(10);

	
Model::unload()

	Remove active record and restore model to default state:

$m = $m->load(10);
$m->unload();

$m->set('name', 'New User');
$m->save(); // creates new user

	
Model::delete($id = null)

	Remove current record from DataSet. You can optionally pass ID if you wish
to delete a different record. If you pass ID of a currently loaded record,
it will be unloaded.

Inserting Record with a specific ID

When you add a new record with save(), insert() or import, you can specify ID
explicitly:

$m->set('id', 123);
$m->save();

// or $m->insert(['Record with ID=123', 'id' => 123']);

However if you change the ID for record that was loaded, then your database
record will also have its ID changed. Here is example:

$m = $m->load(123);
$m->setId(321);
$m->save();

After this your database won’t have a record with ID 123 anymore.

Type Converting

PHP operates with a handful of scalar types such as integer, string, booleans
etc. There are more advanced types such as DateTime. Finally user may introduce
more useful types.

Agile Data ensures that regardless of the selected database, types are converted
correctly for saving and restored as they were when loading:

$m->addField('is_admin', ['type' => 'boolean']);
$m->set('is_admin', false);
$m->save();

// SQL database will actually store `0`

$m = $m->load();

$m->get('is_admin'); // converted back to `false`

Behind a two simple lines might be a long path for the value. The various
components are essential and as developer you must understand the full sequence:

$m->set('is_admin', false);
$m->save();

Strict Types an Normalization

PHP does not have strict types for variables, however if you specify type for
your model fields, the type will be enforced.

Calling “set()” or using array-access to set the value will start by casting
the value to an appropriate data-type. If it is impossible to cast the value,
then exception will be generated:

$m->set('is_admin', '1'); // OK, but stores as `true`

$m->set('is_admin', 123); // throws exception.

It’s not only the ‘type’ property, but ‘enum’ can also imply restrictions:

$m->addField('access_type', ['enum' => ['readOnly', 'full']]);

$m->set('access_type', 'full'); // OK
$m->set('access_type', 'half-full'); // Exception

There are also non-trivial types in Agile Data:

$m->addField('salary', ['type' => 'atk4_money']);
$m->set('salary', 20); // converts to '20.00 EUR'

$m->addField('date', ['type' => 'date']);
$m->set('date', time()); // converts to DateTime class

Finally, you may create your own custom field types that follow a more
complex logic:

$m->add(new Field_Currency(), 'balance');
$m->set('balance', 12_200.0);

// May transparently work with 2 columns: 'balance_amount' and
// 'balance_currency_id' for example.

Loaded/saved data are always normalized unless the field value normalization
is intercepted a hook.

Final field flag that is worth mentioning is called Field::readOnly
and if set, then value of a field may not be modified directly:

$m->addField('ref_no', ['readOnly' => true]);
$m = $m->load(123);

$m->get('ref_no'); // perfect for reading field that is populated by trigger.

$m->set('ref_no', 'foo'); // exception

Note that readOnly can still have a default value:

$m->addField('created', [
 'readOnly' => true,
 'type' => 'datetime',
 'default' => new DateTime(),
]);

$m->save(); // stores creation time just fine and also will loade it.

Note

If you have been following our “Domain” vs “Persistence” then you can
probably see that all of the above functionality described in this section
apply only to the “Domain” model.

Typecasting

For full documentation on type-casting see Typecasting

Validation

Validation in application always depends on business logic.
For example, if you want age field to be above 14 for the user registration
you may have to ask yourself some questions:

	Can user store 12 inside a age field?

	If yes, Can user persist age with value of 12?

	If yes, Can user complete registration with age of 12?

If 12 cannot be stored at all, then exception would be generated during set(),
before you even get a chance to look at other fields.

If storing of 12 in the model field is OK validation can be called from
beforeSave() hook. This might be a better way if your validation rules depends
on multiple field conditions which you need to be able to access.

Finally you may allow persistence to store 12 value, but validate before
a user-defined operation. completeRegistration method could perform the
validation. In this case you can create a confirmation page, that actually
stores your in-complete registration inside the database.

You may also make a decision to store registration-in-progress inside
a session, so your validation should be aware of this logic.

Agile Data relies on 3rd party validation libraries, and you should be able
to find more information on how to integrate them.

Multi-column fields

Lets talk more about this currency field:

$m->add(new Field_Currency(), 'balance');
$m->set('balance', 12_200.0);

It may be designed to split up the value by using two fields in the database:
balance_amount and balance_currency_id.
Both values must be loaded otherwise it will be impossible to re-construct
the value.

On other hand, we would prefer to hide those two columns for the rest
of application.

Finally, even though we are storing “id” for the currency we want to make use
of References.

Your init() method for a Field_Currency might look like this:

protected function init(): void
{
 parent::init();

 $this->neverPersist = true;

 $f = $this->shortName; // balance

 $this->getOwner()->addField(
 $f . '_amount',
 ['type' => 'atk4_money', 'system' => true]
);

 $this->getOwner()->hasOne(
 $f . '_currency_id',
 [
 $this->currency_model ?? new Currency(),
 'system' => true,
]
);
}

There are more work to be done until Field_Currency could be a valid field, but
I wanted to draw your attention to the use of field flags:

	system flag is used to hide balance_amount and balance_currency_id in UI.

	neverPersist flag is used because there are no balance column in persistence.

Dates and Time

There are 3 datetime formats supported:

	date: Converts into YYYY-MM-DD using UTC timezone for SQL. Defaults
to DateTime() class in PHP, but supports string input (parsed as date
in a current timezone) or unix timestamp.

	time: converts into HH:MM:SS using UTC timezone for storing in SQL.
Defaults to DateTime() class in PHP, but supports string input
(parsed as date in current timezone) or unix timestamp. Will discard
date from timestamp.

	datetime: stores both date and time. Uses UTC in DB. Defaults to
DateTime() class in PHP. Supports string input parsed by strtotime()
or unix timestamp.

Customizations

Process which converts field values in native PHP format to/from
database-specific formats is called typecasting. Persistence driver
implements a necessary type-casting through the following two methods:

	
typecastLoadRow($model, $row);

	Convert persistence-specific row of data to PHP-friendly row of data.

	
typecastSaveRow($model, $row);

	Convert native PHP-native row of data into persistence-specific.

Row persisting may rely on additional methods, such as:

	
typecastLoadField(Field $field, $value);

	Convert persistence-specific row of data to PHP-friendly row of data.

	
typecastSaveField(Field $field, $value);

	Convert native PHP-native row of data into persistence-specific.

Duplicating and Replacing Records

In normal operation, once you store a record inside your database, your
interaction will always update this existing record. Sometimes you want
to perform operations that may affect other records.

Create copy of existing record

	
Model::duplicate($id = null)

	Normally, active record stores “id”, but when you call duplicate() it
forgets current ID and as result it will be inserted as new record when you
execute save() next time.

If you pass the $id parameter, then the new record will be saved under
a new ID:

// Assume DB with only one record with ID = 123

// Load and duplicate that record
$m->load(123)->duplicate()->save();

// Now you have 2 records:
// one with ID = 123 and another with ID = {next db generated id}
echo $m->executeCountQuery();

Duplicate then save under a new ID

Assuming you have 2 different records in your database: 123 and 124, how can you
take values of 123 and write it on top of 124?

Here is how:

$m->load(123)->duplicate()->setId(124)->save();

Now the record 124 will be replaced with the data taken from record 123.
For SQL that means calling ‘replace into x’.

Warning

There is no special treatment for joins() when duplicating records, so your
new record will end up referencing the same joined record. If the join is
reverse then your new record may not load.

This will be properly addressed in a future version of Agile Data.

Working with Multiple DataSets

When you load a model, conditions are applied that make it impossible for you
to load record from outside of a data-set. In some cases you do want to store
the model outside of a data-set. This section focuses on various use-cases like
that.

Cloning versus New Instance

When you clone a model, the new copy will inherit pretty much all the conditions
and any in-line modifications that you have applied on the original model.
If you decide to create new instance, it will provide a vanilla copy of model
without any in-line modifications.
This can be used in conjunction to escape data-set.

	
Model::newInstance($class = null, $options = [])

	

Looking for duplicates

We have a model ‘Order’ with a field ‘ref’, which must be unique within
the context of a client. However, orders are also stored in a ‘Basket’.
Consider the following code:

$basket->ref('Order')->insert(['ref' => 123]);

You need to verify that the specific client wouldn’t have another order with
this ref, how do you do it?

Start by creating a beforeSave handler for Order:

$this->onHookShort(Model::HOOK_BEFORE_SAVE, function () {
 if ($this->isDirty('ref')) {
 $m = (new static())
 ->addCondition('client_id', $this->get('client_id')) // same client
 ->addCondition($this->idField, '!=', $this->getId()) // has another order
 ->tryLoadBy('ref', $this->get('ref')) // with same ref
 if ($m !== null) {
 throw (new Exception('Order with ref already exists for this client'))
 ->addMoreInfo('client', $this->get('client_id'))
 ->addMoreInfo('ref', $this->get('ref'))
 }
 }
});

So to review, we used newInstance() to create new copy of a current model. It
is important to note that newInstance() is using get_class($this) to determine
the class.

Archiving Records

In this use case you are having a model ‘Order’, but you have introduced the
option to archive your orders. The method archive() is supposed to mark order
as archived and return that order back. Here is the usage pattern:

$o->addCondition('is_archived', false); // to restrict loading of archived orders
$o = $o->load(123);
$archive = $o->archive();
$archive->set('note', $archive->get('note') . "\nArchived on $date.");
$archive->save();

With Agile Data API building it’s quite common to create a method that does not
actually persist the model.

The problem occurs if you have added some conditions on the $o model. It’s
quite common to use $o inside a UI element and exclude Archived records. Because
of that, saving record as archived may cause exception as it is now outside
of the result-set.

There are two approaches to deal with this problem. The first involves disabling
after-save reloading:

public function archive()
{
 $this->reloadAfterSave = false;
 $this->set('is_archived', true);

 return $this;
}

After-save reloading would fail due to is_archived = false condition so
disabling reload is a hack to get your record into the database safely.

The other, more appropriate option is to re-use a vanilla Order record:

public function archive()
{
 $this->save(); // just to be sure, no dirty stuff is left over

 $archive = new static();
 $archive = $archive->load($this->getId());
 $archive->set('is_archived', true);

 $this->unload(); // active record is no longer accessible

 return $archive;
}

Working with Multiple Persistencies

Normally when you load the model and save it later, it ends up in the same
database from which you have loaded it. There are cases, however, when you
want to store the record inside a different database. As we are looking into
use-cases, you should keep in mind that with Agile Data Persistence can be
pretty much anything including ‘RestAPI’, ‘File’, ‘Memcache’ or ‘MongoDB’.

Important

Instance of a model can be associated with a single persistence only. Once
it is associated, it stays like that. To store a model data into a different
persistence, a new instance of your model will be created and then associated
with a new persistence.

	
Model::withPersistence($persistence)

	

Creating Cache with Memcache

Assuming that loading of a specific items from the database is expensive, you can
opt to store them in a MemCache. Caching is not part of core functionality of
Agile Data, so you will have to create logic yourself, which is actually quite
simple.

You can use several designs. I will create a method inside my application class
to load records from two persistencies that are stored inside properties of my
application:

public function loadQuick($class, $id)
{
 // first, try to load it from MemCache
 $m = (clone $class)->setPersistence($this->mdb)->tryLoad($id);

 if ($m === null) {
 // fall-back to load from SQL
 $m = $this->sql->add(clone $class)->load($id);

 // store into MemCache too
 $m = $m->withPersistence($this->mdb)->save();
 }

 $m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 $m->withPersistence($this->sql)->save();
 });

 $m->onHook(Model::HOOK_BEFORE_DELETE, function (Model $m) {
 $m->withPersistence($this->sql)->delete();
 });

 return $m;
}

The above logic provides a simple caching framework for all of your models.
To use it with any model:

$m = $app->loadQuick(new Order(), 123);

$m->set('completed', true);
$m->save();

To look in more details into the actual method, I have broken it down into chunks:

// first, try to load it from MemCache:
$m = (clone $class)->setPersistence($this->mdb)->tryLoad($id);

The $class will be an uninitialized instance of a model (although you can also
use a string). It will first be associated with the MemCache DB persistence and
we will attempt to load a corresponding ID. Next, if no record is found in the
cache:

if ($m === null) {
 // fall-back to load from SQL
 $m = $this->sql->add(clone $class)->load($id);

 // store into MemCache too
 $m = $m->withPersistence($this->mdb)->save();
}

Load the record from the SQL database and store it into $m. Next, save $m into
the MemCache persistence by replacing (or creating new) record. The $m at the
end will be associated with the MemCache persistence for consistency with cached
records.
The last two hooks are in order to replicate any changes into the SQL database
also:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 $m->withPersistence($this->sql)->save();
});

$m->onHook(Model::HOOK_BEFORE_DELETE, function (Model $m) {
 $m->withPersistence($this->sql)->delete();
});

I have too note that withPersistence() transfers the dirty flags into a new
model, so SQL record will be updated with the record that you have modified only.

If saving into SQL is successful the memcache persistence will be also updated.

Using Read / Write Replicas

In some cases your application have to deal with read and write replicas of
the same database. In this case all the operations would be done on the read
replica, except for certain changes.

In theory you can use hooks (that have option to cancel default action) to
create a comprehensive system-wide solution, I’ll illustrate how this can be
done with a single record:

$m = new Order($readReplica);

$m->set('completed', true);

$m->withPersistence($writeReplica)->save();
$dirtyRef = &$m->getDirtyRef();
$dirtyRef = [];

// Possibly the update is delayed
// $m->reload();

By changing ‘completed’ field value, it creates a dirty field inside $m,
which will be saved inside a $writeReplica. Although the proper approach
would be to reload the $m, if there is chance that your update to a write
replica may not propagate to read replica, you can simply reset the dirty flags.

If you need further optimization, make sure reloadAfterSave is disabled
for the write replica:

$m->withPersistence($writeReplica)->setDefaults(['reloadAfterSave' => false])->save();

or use:

$m->withPersistence($writeReplica)->saveAndUnload();

Archive Copies into different persistence

If you wish that every time you save your model the copy is also stored inside
some other database (for archive purposes) you can implement it like this:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 $arc = $this->withPersistence($m->getApp()->archive_db);

 // add some audit fields
 $arc->addField('original_id', ['type' => 'integer'])->set($this->getId());
 $arc->addField('saved_by')->set($this->getApp()->user);

 $arc->saveAndUnload();
});

Store a specific record

If you are using authentication mechanism to log a user in and you wish to
store his details into Session, so that you don’t have to reload every time,
you can implement it like this:

if (!isset($_SESSION['ad'])) {
 $_SESSION['ad'] = []; // initialize
}

$sess = new \Atk4\Data\Persistence\Array_($_SESSION['ad']);
$loggedUser = new User($sess);
$loggedUser = $loggedUser->load('active_user');

This would load the user data from Array located inside a local session. There
is no point storing multiple users, so I’m using id=’active_user’ for the only
user record that I’m going to store there.

How to add record inside session, e.g. log the user in? Here is the code:

$u = new User($db);
$u = $u->load(123);

$u->withPersistence($sess)->save();

Actions

Action is a multi-row operation that will affect all the records inside DataSet.
Actions will not affect records outside of DataSet (records that do not match
conditions)

	
Model::action($action, $args = [])

	Prepares a special object representing “action” of a persistence layer based
around your current model.

Action Types

Actions can be grouped by their result. Some action will be executed and will
not produce any results. Others will respond with either one value or multiple
rows of data.

	no results

	single value

	single row

	single column

	array of hashes

Action can be executed at any time and that will return an expected result:

$m = Model_Invoice();
$val = (int) $m->action('count')->getOne(); // same as $val = $m->executeCountQuery()

Most actions are sufficiently smart to understand what type of result you are
expecting, so you can have the following code:

$m = Model_Invoice();
$val = $m->action('count')();

When used inside the same Persistence, sometimes actions can be used without
executing:

$m = Model_Product($db);
$m->addCondition('name', $productName);
$action = $m->action('getOne', ['id']);

$m = Model_Invoice($db);
$m->insert(['qty' => 20, 'product_id' => $action]);

Insert operation will check if you are using same persistence.
If the persistence object is different, it will execute action and will use
result instead.

Being able to embed actions inside next query allows Agile Data to reduce number
of queries issued.

The default action type can be set when executing action, for example:

$a = $m->action('field', 'user', 'getOne');

echo $a(); // same as $a->getOne();

SQL Actions

Currently only read-only actions are supported by Persistence\Sql:

	select - produces query that returns DataSet (array of hashes)

There are ability to execute aggregation functions:

echo $m->action('fx', ['max', 'salary'])->getOne();

and finally you can also use count:

echo $m->executeCountQuery(); // same as echo $m->action('count')->getOne()

SQL Actions on Linked Records

In conjunction with Model::refLink() you can produce expressions for creating
sub-selects. The functionality is nicely wrapped inside HasMany::addField():

$client->hasMany('Invoice')
 ->addField('total_gross', ['aggregate' => 'sum', 'field' => 'gross']);

This operation is actually consisting of 3 following operations:

	Related model is created and linked up using refLink that essentially places
a condition between $client and $invoice assuming they will appear inside
same query.

	Action is created from $invoice using ‘fx’ and requested method / field.

	Expression is created with name ‘total_gross’ that uses Action.

Here is a way how to intervene with the process:

$client->hasMany('Invoice');
$client->addExpression('last_sale', ['expr' => function (Model $m) {
 return $m->refLink('Invoice')
 ->setOrder('date desc')
 ->setLimit(1)
 ->action('field', ['total_gross'], 'getOne');
}, 'type' => 'float']);

The code above uses refLink and also creates expression, but it tweaks
the action used.

Action Matrix

SQL actions apply the following:

	insert: init, mode

	update: init, mode, conditions, limit, order, hook

	delete: init, mode, conditions

	select: init, fields, conditions, limit, order, hook

	count: init, field, conditions, hook,

	field: init, field, conditions

	fx: init, field, conditions

Fetching results

	
class Model

	

Model linked to a persistence is your “window” into DataSet and you get several
ways which allow you to fetch the data.

Iterate through model data

	
Model::getIterator()

	

Create your persistence object first then iterate it:

$db = \Atk4\Data\Persistence::connect($dsn);
$m = new Model_Client($db);

foreach ($m as $id => $item) {
 echo $id . ': ' . $item->get('name') . "\n";
}

You must be aware that $item will actually be same as $m and will point to the model.
The model, however, will have the data loaded for you, so you can call methods for
each iteration like this:

foreach ($m as $item) {
 $item->sendReminder();
}

Warning

Currently ATK Data does not create new copy of your model object for
every row. Instead the same object is re-used, simply $item->getDataRef() is modified
by the iterator. For new users this may be surprising that $item is the same
object through the iterator, but for now it’s the most CPU-efficient way.

Additionally model will execute necessary after-load hooks that might trigger some
other calculation or validations.

Note

changing query parameter during iteration will has no effect until you
finish iterating.

Keeping models

If you wish to preserve the objects that you have loaded (not recommended as they
will consume memory), you can do it like this:

$cat = [];

foreach (new Model_Category($db) as $id => $c) {
 $cat[$id] = clone $c;
}

Raw Data Fetching

	
Model::getRawIterator()

	

If you do not care about the hooks and simply wish to get the data, you can fetch
it:

foreach ($m->getRawIterator() as $row) {
 var_dump($row); // array
}

The $row will also contain value for “id” and it’s up to you to find it yourself
if you need it.

	
Model::export()

	

Will fetch and output array of hashes which will represent entirety of data-set.
Similarly to other methods, this will have the data mapped into your fields for
you and server-side expressions executed that are embedded in the query.

By default - onlyFields will be presented as well as system fields.

Fetching data through action

You can invoke and iterate action (particularly SQL) to fetch the data:

foreach ($m->action('select') as $row) {
 var_dump($row); // array
}

This has the identical behavior to $m->getRawIterator();

Comparison of various ways of fetching

	getIterator - action(select), [fetches row, set ID/Data, call afterLoad hook,
yields model], unloads data

	getRawIterator - action(select), [fetches row, yields row]

	export - action(select), fetches all rows, returns all rows

	
class Atk4\Data\Field

	

Field

Field represents a model property that can hold information about your entity.
In Agile Data we call it a Field, to distinguish it from object properties. Fields
inside a model normally have a corresponding instance of Field class.

See Model::addField() on how fields are added. By default,
persistence sets the property _defaultSeedAddField which should correspond
to a field object that has enough capabilities for performing field-specific
mapping into persistence-logic.

	
class Atk4\Data\Field

	

Field represents a property of your business entity or column if you think
of your data in a tabular way. Once you have defined Field for your Model, you
can set and read value of that field:

$model->addField('name');
$model->set('name', 'John');

echo $model->get('name'); // John

Just like you can reuse Model to access multiple data records,
Field object will be reused also.

Purpose of Field

Implementation of Field in Agile Data is a very powerful and distinctive feature.
While Model::data store your field values, the job of Field
is to interpret that value, normalize it, type-cast it, validate it and decide
on how to store or present it.

The implementation of Fields is tightly integrated with Model and
Persistence.

Field Type

	
property Atk4\Data\Field::$type

	

Probably a most useful quality of Field is that it has a clear type:

$model->addField('age', ['type' => 'integer']);
$model->set('age', '123');

var_dump($model->get('age')); // int(123)

Agile Data defines some basic types to make sure that values:

	can be safely stored and manipulated.

	can be saved (Persistence)

	can be presented to user (UI)

A good example would be a date type:

$model->addField('birth', ['type' => 'date']);
$model->set('birth', new DateTime('2014-01-10'));

$model->save();

When used with SQL persistence the value will be automatically converted into a
format preferred by the database 2014-10-01. Because PHP has only a single
type for storing date, time and datetime, this can lead to various problems such
as handling of timezones or DST. Agile Data takes care of those issues for you
automatically.

Conversions between types is what we call Typecasting and there is a
documentation section dedicated to it.

Finally, because Field is a class, it can be further extended. For some
interesting examples, check out PasswordField. I’ll explain how to
create your own field classes and where they can be beneficial.

Valid types are: string, integer, boolean, datetime, date, time.

You can specify unsupported type too. It will be untouched by Agile Data so you
would have to implement your own handling of a new type.

	Persistence implements two methods:

	
	Persistence::typecastSaveRow()

	Persistence::typecastLoadRow()

Those are responsible for converting PHP native types to persistence specific
formats as defined in fields. Those methods will also change name of the field
if needed (see Field::actual)

Basic Properties

Fields have properties, which define its behaviour. Some properties apply on how
the values are handled or restrictions on interaction, other values can even
help with data vizualization. For example if Field::enum is used
with Agile UI form, it will be displayed as radio button or a drop-down:

$model->addField('gender', ['enum' => ['F', 'M']]);

// Agile UI code:
$app = new \Atk4\Ui\App('my app');
$app->initLayout('Centered');
Form::addTo($app)->setModel($model);

You will also not be able to set value which is not one of the enum values
even if you don’t use UI.

This allows you to define your data fields once and have those rules respected
everywhere in your app - in your manual code, in UI and in API.

	
property Atk4\Data\Field::$default

	

When no value is specified for a field, default value is used when inserting.
This value will also appear pre-filled inside a Form.

	
property Atk4\Data\Field::$enum

	

Specifies array containing all the possible options for the value.
You can set only to one of the values (loosely typed comparison is used).

	
property Atk4\Data\Field::$values

	

Specifies array containing all the possible options for the value.
Similar with $enum, but difference is that this array is a hash array so
array keys will be used as values and array values will be used as titles
for these values.

	
property Atk4\Data\Field::$nullable

	

Set this to false if field value must NOT be NULL. Attempting to set field
value to “NULL” will result in exception.
Example:

$model->set('age', 0);
$model->save();

$model->set('age', null); // exception

	
property Atk4\Data\Field::$required

	

Set this to true for field that may not contain “empty” value.
You can’t use NULL or any value that is considered empty/false by PHP.
Some examples that are not allowed are:

	empty string ‘’

	0 numerical value or 0.0

	boolean false

Example:

$model->set('age', 0); // exception

$model->set('age', null); // exception

	
property Atk4\Data\Field::$readOnly

	

Modifying field that is read-only through set() methods (or array access) will
result in exception. SqlExpressionField is read-only by default.

	
property Atk4\Data\Field::$actual

	

Specify name of the Table Row Field under which field will be persisted.

	
property Atk4\Data\Field::$join

	

This property will point to Join object if field is associated
with a joined table row.

	
property Atk4\Data\Field::$system

	

System flag is intended for fields that are important to have inside hooks
or some core logic of a model. System fields will always be appended to
Model::setOnlyFields, however by default they will not appear on forms
or grids (see Field::isVisible, Field::isEditable).

Adding condition on a field will also make it system.

	
property Atk4\Data\Field::$neverPersist

	

Field will never be loaded or saved into persistence. You can use this flag
for fields that physically are not located in the database, yet you want to see
this field in beforeSave hooks.

	
property Atk4\Data\Field::$neverSave

	

This field will be loaded normally, but will not be saved in a database.
Unlike “readOnly” which has a similar effect, you can still change the value
of this field. It will simply be ignored on save. You can create some logic in
beforeSave hook to read this value.

	
property Atk4\Data\Field::$ui

	

This field contains certain arguments that may be needed by the UI layer to know
if user should be allowed to edit this field.

	
Atk4\Data\Field::set()

	

Set the value of the field. Same as $model->set($fieldName, $value);

	
Atk4\Data\Field::setNull()

	

Set field value to NULL. This will bypass “nullable” and “required” checks and
should only be used if you are planning to set a different value to the field
before executing save().

If you do not set non-null value to a not-nullable field, save() will fail with
exception.

Example:

$model['age'] = 0;
$model->save();

$model->getField('age')->setNull(); // no exception
$model->save(); // still getting exception here

See also :php:method:`Model::setNull`.

	
Atk4\Data\Field::get()

	

Get the value of the field. Same as $model->get($fieldName);

UI Presentation

Agile Data does not deal directly with formatting your data for the user.
There may be various items to consider, for instance the same date can be
presented in a short or long format for the user.

The UI framework such as Agile Toolkit can make use of the Field::ui
property to allow user to define default formats or input parsing rules, but
Agile Data does not regulate the Field::ui property and different
UI frameworks may use it differently.

	
Atk4\Data\Field::isEditable()

	

Returns true if UI should render this field as editable and include inside
forms by default.

	
Atk4\Data\Field::isVisible()

	

Returns true if UI should render this field in Grid and other readOnly display
views by default.

	
Atk4\Data\Field::isHidden()

	

Returns true if UI should not render this field in views.

Conditions and DataSet

	
class Atk4\Data\Model

	

When model is associated with the database, you can specify a default table
either explicitly or through a $table property inside a model:

$m = new Model_User($db, 'user');
$m = $m->load(1);
echo $m->get('gender'); // "M"

Following this line, you can load ANY record from the table. It’s possible to
narrow down set of “loadable” records by introducing a condition:

$m = new Model_User($db, 'user');
$m->addCondition('gender', 'F');
$m = $m->load(1); // exception, user with ID=1 is M

Conditions serve important role and must be used to intelligently restrict
logically accessible data for a model before you attempt the loading.

Basic Usage

	
Atk4\Data\Model::addCondition($field, $operator = null, $value = null)

	

There are many ways to execute addCondition. The most basic one that will be
supported by all the drivers consists of 2 arguments or if operator is ‘=’:

$m->addCondition('gender', 'F');
$m->addCondition('gender', '=', 'F'); // exactly same

Once you add a condition, you can’t get rid of it, so if you want
to preserve the state of your model, you need to use clone:

$m = new Model_User($db, 'user');
$girls = (clone $m)->addCondition('gender', 'F');

$m = $m->load(1); // success
$girls = $girls->load(1); // exception

Operations

Most database drivers will support the following additional operations:

>, <, >=, <=, !=, in, not in, like, not like, regexp, not regexp

The operation must be specified as second argument:

$m = new Model_User($db, 'user');
$girls = (clone $m)->addCondition('gender', 'F');
$notGirls = (clone $m)->addCondition('gender', '!=', 'F');

When you use ‘in’ or ‘not in’ you should pass value as array:

$m = new Model_User($db, 'user');
$girlsOrBoys = (clone $m)->addCondition('gender', 'in', ['F', 'M']);

Multiple Conditions

You can set multiple conditions on the same field even if they are contradicting:

$m = new Model_User($db, 'user');
$noone = (clone $m)
 ->addCondition('gender', 'F')
 ->addCondition('gender', 'M');

Normally, however, you would use a different fields:

$m = new Model_User($db, 'user');
$girlSue = (clone $m)
 ->addCondition('gender', 'F')
 ->addCondition('name', 'Sue');

You can have as many conditions as you like.

Adding OR Conditions

In Agile Data all conditions are additive. This is done for security - no matter
what condition you are adding, it will not allow you to circumvent previously
added condition.

You can, however, add condition that contains multiple clauses joined with OR
operator:

$m->addCondition(Model\Scope::createOr(
 ['name', 'John'],
 ['surname', 'Smith'],
));

This will add condition that will match against records with either
name=John OR surname=Smith.
If you are building multiple conditions against the same field, you can use this
format:

$m->addCondition('name', ['John', 'Joe']);

For all other cases you can implement them with Model::expr:

$m->addCondition($m->expr('(day([birth_date]) = day([registration_date]) or day([birth_date]) = [])', 10));

This rather unusual condition will show user records who have registered on same
date when they were born OR if they were born on 10th. (This is really silly
condition, please don’t judge, if you have a better example, I’d love to hear).

Defining your classes

Although I have used in-line addition of the arguments, normally you would want
to set those conditions inside the init() method of your model:

class Model_Girl extends Model_User
{
 protected function init(): void
 {
 parent::init();

 $this->addCondition('gender', 'F');
 }
}

Note that the field ‘gender’ should be defined inside Model_User::init().

Vendor-dependent logic

There are many other ways to set conditions, but you must always check if they
are supported by the driver that you are using.

Field Matching

Supported by: SQL (planned for Array, Mongo)

Usage:

$m->addCondition('name', $m->getField('surname'));

Will perform a match between two fields.

Expression Matching

Supported by: SQL (planned for Array)

Usage:

$m->addCondition($m->expr('[name] > [surname]');

Allow you to define an arbitrary expression to be used with fields. Values
inside [blah] should correspond to field names.

SQL Expression Matching

	
Atk4\Data\Model::expr($template, $arguments = [])

	Basically is a wrapper to create DSQL Expression, however this will find any
usage of identifiers inside the template that do not have a corresponding
value inside $arguments and replace it with the field:

$m->expr('[age] > 20'); // same as
$m->expr('[age] > 20', ['age' => $m->getField('age')); // same as

Supported by: SQL

Usage:

$m->addCondition($m->expr('[age] between [min_age] and [max_age]'));

Allow you to define an arbitrary expression using SQL language.

Custom Parameters in Expressions

Supported by: SQL

Usage:

$m->addCondition(
 $m->expr('[age] between [min_age] and [max_age]'),
 ['min_age' => 10, 'max_age' => 30]
);

Allow you to pass parameters into expressions. Those can be nested and consist
of objects as well as actions:

$m->addCondition(
 $m->expr('[age] between [min_age] and [max_age]'),
 [
 'min_age' => $m->action('min', ['age']),
 'max_age' => $m->expr('(20 + [])', [20]),
]
);

This will result in the following condition:

WHERE
 `age` between
 (select min(`age`) from `user`)
 and
 (20 + :a)

where the other 20 is passed through parameter. Refer to
http://dsql.readthedocs.io/en/develop/expressions.html for full documentation
on expressions.

Expression as first argument

Supported by: SQL, (Planned: Array, Mongo)

The $field of addCondition() can be passed as either an expression or any
object implementing Atk4DataPersistenceSqlExpressionable interface. Same logic applies
to the $value:

$m->addCondition($m->getField('name'), '!=', $this->getField('surname'));

Advanced Usage

Model Scope

Using the Model::addCondition method is the basic way to limit the model scope of records. Under the hood
Agile Data utilizes a special set of classes (Condition and Scope) to apply the conditions as filters on records retrieved.
These classes can be used directly and independently from Model class.

	
Atk4\Data\Model::scope()

	

This method provides access to the model scope enabling conditions to be added:

$contact->scope()->addCondition($condition); // adding condition to a model

	
class Atk4\Data\Scope

	

Scope object has a single defined junction (AND or OR) and can contain multiple nested Condition and/or Scope objects referred to as nested conditions.
This makes creating Model scopes with deep nested conditions possible,
e.g ((Name like ‘ABC%’ and Country = ‘US’) or (Name like ‘CDE%’ and (Country = ‘DE’ or Surname = ‘XYZ’)))

Scope can be created using new Scope() statement from an array or joining Condition objects or condition arguments arrays:

// $condition1 will be used as nested condition
$condition1 = new Condition('name', 'like', 'ABC%');

// $condition2 will converted to Condition object and used as nested condition
$condition2 = ['country', 'US'];

// $scope1 is created using AND as junction and $condition1 and $condition2 as nested conditions
$scope1 = Scope::createAnd($condition1, $condition2);

$condition3 = new Condition('country', 'DE');
$condition4 = ['surname', 'XYZ'];

// $scope2 is created using OR as junction and $condition3 and $condition4 as nested conditions
$scope2 = Scope::createOr($condition3, $condition4);

$condition5 = new Condition('name', 'like', 'CDE%');

// $scope3 is created using AND as junction and $condition5 and $scope2 as nested conditions
$scope3 = Scope::createAnd($condition5, $scope2);

// $scope is created using OR as junction and $scope1 and $scope3 as nested conditions
$scope = Scope::createOr($scope1, $scope3);

Scope is an independent object not related to any model. Applying scope to model is using the Model::scope()->add($condition) method:

$contact->scope()->add($condition); // adding condition to a model
$contact->scope()->add($conditionXYZ); // adding more conditions

	
__construct($nestedConditions = [], $junction = Scope::AND);

	

Creates a Scope object from an array:

// below will create 2 conditions and nest them in a compound conditions with AND junction
$scope1 = new Scope([
 ['name', 'like', 'ABC%'],
 ['country', 'US'],
]);

	
negate();

	

Negate method has behind the full map of conditions so any condition object can be negated, e.g negating ‘>=’ results in ‘<’, etc.
For compound conditionss this method is using De Morgan’s laws, e.g:

// using $scope1 defined above
// results in "(Name not like 'ABC%') or (Country does not equal 'US')"
$scope1->negate();

	
createAnd(...$conditions);

	

Merge $conditions using AND as junction. Returns the resulting Scope object.

	
createOr(...$conditions);

	

Merge $conditions using OR as junction. Returns the resulting Scope object.

	
simplify();

	

Peels off single nested conditions. Useful for converting (((field = value))) to field = value.

	
clear();

	

Clears the condition from nested conditions.

	
isOr();

	

Checks if scope components are joined by OR

	
isAnd();

	

Checks if scope components are joined by AND

	
class Atk4\Data\Model\Scope\Condition

	

Condition represents a simple condition in a form [field, operation, value], similar to the functionality of the
Model::addCondition method

	
__construct($key, $operator = null, $value = null);

	

Creates condition object based on provided arguments. It acts similar to Model::addCondition

$key can be Model field name, Field object, Expression object, FALSE (interpreted as Expression(‘false’)), TRUE (interpreted as empty condition) or an array in the form of [$key, $operator, $value]
$operator can be one of the supported operators >, <, >=, <=, !=, in, not in, like, not like, regexp, not regexp
$value can be Field object, Expression object, array (interpreted as ‘any of the values’) or other scalar value

If $value is omitted as argument then $operator is considered as $value and ‘=’ is used as operator

	
negate();

	

Negates the condition, e.g:

// results in "name != 'John'"
$condition = (new Condition('name', 'John'))->negate();

	
toWords(Model $model = null);

	

Converts the condition object to human readable words. Condition must be assigned to a model or model argument provided:

// results in 'Contact where Name is John'
(new Condition('name', 'John'))->toWords($contactModel);

Conditions on Referenced Models

Agile Data allows for adding conditions on related models for retrieval of type ‘model has references where’.

Setting conditions on references can be done utilizing the Model::refLink method but there is a shorthand format
directly integrated with addCondition method using “/” to chain the reference names:

$contact->addCondition('company/country', 'US');

This will limit the $contact model to those whose company is in US.
‘company’ is the name of the reference in $contact model and ‘country’ is a field in the referenced model.

If a condition must be set directly on the existence or number of referenced records the special symbol “#” can be
utilized to indicate the condition is on the number of records:

$contact->addCondition('company/tickets/#', '>', 3);

This will limit the $contact model to those whose company have more than 3 tickets.
‘company’ and ‘tickets’ are the name of the chained references (‘company’ is a reference in the $contact model and
‘tickets’ is a reference in Company model)

SQL Extensions

Databases that support SQL language can use PersistenceSql.
This driver will format queries to the database using SQL language.

In addition to normal operations you can extend and customize various queries.

Default Model Classes

When using PersistenceSql model building will use different classes for fields,
expressions, joins etc:

	addField - FieldSql (field can be used as part of DSQL Expression)

	hasOne - ReferenceHasOneSql (allow importing fields)

	addExpression - SqlExpressionField (define expression through DSQL)

	join - JoinSql (join tables query-time)

SQL Field

	
class FieldSql

	

	
property FieldSql::$actual

	PersistenceSql supports field name mapping. Your field could
have different column name in your schema:

$this->addField('name', ['actual' => 'first_name']);

This will apply to load / save operations as well as query mapping.

	
FieldSql::getDsqlExpression()

	SQL Fields can be used inside other SQL expressions:

$q = $connection->expr('[age] + [birth_year]', [
 'age' => $m->getField('age'),
 'birth_year' => $m->getField('birth_year'),
]);

SQL Reference

	
class ReferenceHasOneSql

	Extends ReferenceHasOne

	
ReferenceHasOneSql::addField()

	Allows importing field from a referenced model:

$model->hasOne('country_id', ['model' => [Country::class]])
 ->addField('country_name', 'name');

Second argument could be array containing additional settings for the field:

$model->hasOne('account_id', ['model' => [Account::class]])
 ->addField('account_balance', ['balance', 'type' => 'atk4_money']);

Returns new field object.

	
ReferenceHasOneSql::addFields()

	Allows importing multiple fields:

$model->hasOne('country_id', ['model' => [Country::class]])
 ->addFields(['country_name', 'country_code']);

You can specify defaults to be applied on all fields:

$model->hasOne('account_id', ['model' => [Account::class]])
 ->addFields([
 'opening_balance',
 'balance',
], ['type' => 'atk4_money']);

You can also specify aliases:

$model->hasOne('account_id', ['model' => [Account::class]])
 ->addFields([
 'opening_balance',
 'account_balance' => 'balance',
], ['type' => 'atk4_money']);

If you need to pass more details to individual field, you can also use sub-array:

$model->hasOne('account_id', ['model' => [Account::class]])
 ->addFields([
 [
 ['opening_balance', 'caption' => 'The Opening Balance'],
 'account_balance' => 'balance',
], ['type' => 'atk4_money']);

Returns $this.

	
ReferenceHasOneSql::ref()

	While similar to ReferenceHasOne::ref this implementation
implements deep traversal:

$countryModel = $customerModel->addCondition('is_vip', true)
 ->ref('country_id'); // $model was not loaded!

	
ReferenceHasOneSql::refLink()

	Creates a model for related entity with applied condition referencing field
of a current model through SQL expression rather then value. This is usable
if you are creating sub-queries.

	
ReferenceHasOneSql::addTitle()

	Similar to addField, but will import “title” field and will come up with
good name for it:

$model->hasOne('country_id', ['model' => [Country::class]])
 ->addTitle();

// creates 'country' field as sub-query for country.name

You may pass defaults:

$model->hasOne('country_id', ['model' => [Country::class]])
 ->addTitle(['caption' => 'Country Name']);

Returns new field object.

Expressions

	
class SqlExpressionField

	Extends FieldSql

Expression will map into the SQL code, but will perform as read-only field otherwise.

	
property SqlExpressionField::$expr

	Stores expression that you define through DSQL expression:

$model->addExpression('age', ['expr' => 'year(now()) - [birth_year]']);
// tag [birth_year] will be automatically replaced by respective model field

	
SqlExpressionField::getDsqlExpression()

	SQL Expressions can be used inside other SQL expressions:

$model->addExpression('can_buy_alcohol', ['expr' => 'if([age] > 25, 1, 0)', 'type' => 'boolean']);

Adding expressions to model will make it automatically reload itself after save
as default behavior, see Model::reloadAfterSave.

Transactions

	
class PersistenceSql

	

	
PersistenceSql::atomic()

	

This method allows you to execute code within a ‘START TRANSACTION / COMMIT’ block:

class Invoice
{
 public function applyPayment(Payment $p)
 {
 $this->getModel()->getPersistence()->atomic(function () use ($p) {
 $this->set('paid', true);
 $this->save();

 $p->set('applied', true);
 $p->save();
 });
 }
}

Callback format of this method allows a more intuitive syntax and nested execution
of various blocks. If any exception is raised within the block, then transaction
will be automatically rolled back. The return of atomic() is same as return of
user-defined callback.

Custom Expressions

	
PersistenceSql::expr()

	This method is also injected into the model, that is associated with
PersistenceSql so the most convenient way to use this method is by calling
$model->expr(‘foo’).

This method is quite similar to Atk4DataPersistenceSqlQuery::expr() method explained here:
http://dsql.readthedocs.io/en/stable/expressions.html

There is, however, one difference. Expression class requires all named arguments
to be specified. Use of Model::expr() allows you to specify field names and those
field expressions will be automatically substituted. Here is long / short format:

$q = $connection->expr('[age] + [birth_year]', [
 'age' => $m->getField('age'),
 'birth_year' => $m->getField('birth_year'),
]);

// identical to

$q = $m->expr('[age] + [birth_year']);

This method is automatically used by SqlExpressionField.

Actions

The most basic action you can use with SQL persistence is ‘select’:

$action = $model->action('select');

Action is implemented by DSQL library, that is further documented at
http://dsql.readthedocs.io (See section Queries).

Action: select

This action returns a basic select query. You may pass one argument - array
containing list of fields:

$action = $model->action('select', ['name', 'surname']);

Passing false will not include any fields into select (so that you can include
them yourself):

$action = $model->action('select', [false]);
$action->field('count(*)', 'c);

Action: count

Returns query for count(*):

$action = $model->action('count');
$cnt = $action->getOne();
// for materialized count use:
$cnt = $model->executeCountQuery();

You can also specify alias:

$action = $model->action('count', ['alias' => 'cc']);
$data = $action->getRow();
$cnt = $data->get('cc');

Action: field

Get query for a specific field:

$action = $model->action('field', ['age']);
$age = $action->limit(1)->getOne();

You can also specify alias:

$action = $model->action('field', ['age', 'alias' => 'the_age']]);
$age = $action->limit(1)->getRow()['the_age'];

Action: fx

Executes single-argument SQL function on field:

$action = $model->action('fx', ['avg', 'age']);
$ageAvg = $action->getOne();

This method also supports alias. Use of alias is handy if you are using those
actions as part of other query (e.g. UNION)

Stored Procedures

SQL servers allow to create and use stored procedures and there are several ways
to invoke them:

	CALL procedure. No data / output.

	Specify OUT parameters.

	Stored FUNCTION, e.g. select myfunc(123)

	Stored procedures that return data.

Agile Data has various ways to deal with above scenarios:

	Custom expression through DSQL

	Model Method

	Model Field

	Model Source

Here I’ll try to look into each of those approaches but closely pay attention
to the following:

	Abstraction and concern separation.

	Security and protecting against injection.

	Performance and scalability.

	When to refactor away stored procedures.

Compatibility Warning

Agile Data is designed to be cross-database agnostic. That means you should be
able to swap your SQL to NoSQL or RestAPI at any moment. My relying on stored
procedures you will loose portability of your application.

We do have our legacy applications to maintain, so Stored Procedures and SQL
extensions are here to stay. By making your Model rely on those extensions you
will loose ability to use the same model with non-sql persistencies.

Sometimes you can fence the code like this:

if ($this->getPersistence() instanceof \Atk4\Data\Persistence\Sql) {
 .. sql code ..
}

Or define your pure model, then extend it to add SQL capabilities. Note that
using single model with cross-persistencies should still be possible, so you
should be able to retrieve model data from stored procedure then cache it.

as a Model method

You should be familiar with http://dsql.readthedocs.io/en/develop/expressions.html.

In short this should allow you to build and execute any SQL statement:

$this->expr('call get_nominal_sheet([], [], \'2014-10-01\', \'2015-09-30\', 0)', [
 $this->getApp()->system->getId(),
 $this->getApp()->system['contractor_id'],
])->executeQuery();

Depending on the statement you can also use your statement to retrieve data:

$data = $this->expr('call get_client_report_data([client_id])', [
 'client_id' => $clientId,
])->getRows();

This can be handy if you wish to create a method for your Model to abstract away
the data:

class Client extends \Atk4\Data\Model
{
 protected function init(): void
 {
 ...
 }

 public function getReportData($arg)
 {
 $this->assertIsLoaded();

 return $this->expr('call get_client_report_data([client_id], [arg])', [
 'arg' => $arg,
 'client_id' => $clientId,
])->getRows();
 }
}

Here is another example using PHP generator:

class Client extends \Atk4\Data\Model
{
 protected function init(): void
 {
 ...
 }

 public function fetchReportData($arg)
 {
 $this->assertIsLoaded();

 foreach ($this->expr('call get_client_report_data([client_id], [arg])', [
 'arg' => $arg,
 'client_id' => $clientId,
]) as $row) {
 yield $row;
 }
 }
}

as a Model Field

Important

Not all SQL vendors may support this approach.

Model::addExpression is a SQL extension that allow you to define
any expression for your field query. You can use SQL stored function for data
fetching like this:

class Category extends \Atk4\Data\Model
{
 public $table = 'category';

 protected function init(): void
 {
 parent::init();

 $this->hasOne('parent_id', ['model' => [self::class]]);
 $this->addField('name');

 $this->addExpression('path', ['expr' => 'get_path([id])']);
 }
}

This should translate into SQL query:

select parent_id, name, get_path(id) from category;

where once again, stored function is hidden.

as an Action

Important

Not all SQL vendors may support this approach.

Method PersistenceSql::action and Model::action
generates queries for most of model operations. By re-defining this method,
you can significantly affect the query building of an SQL model:

class CompanyProfit extends \Atk4\Data\Model
{
 public $companyId; // inject company ID, which will act as a condition/argument
 public bool $readOnly = true; // instructs rest of the app, that this model is read-only

 protected function init(): void
 {
 parent::init();

 $this->addField('date_period');
 $this->addField('profit');
 }

 public function action(string $mode, array $args = [])
 {
 if ($mode == 'select') {
 // must return DSQL object here
 return $this->expr('call get_company_profit([company_id])', [
 'company_id' => $this->companyId,
]);
 }

 if ($mode == 'count') {
 // optionally - expression for counting data rows, for pagination support
 return $this->expr('select count(*) from (call get_company_profit([company_id]))', [
 'company_id' => $this->companyId,
]);
 }

 throw (new \Atk4\Data\Exception('You may only perform "select" or "count" action on this model'))
 ->addMoreInfo('action', $mode);
 }
}

as a Temporary Table

A most convenient (although inefficient) way for stored procedures is to place
output data inside a temporary table. You can perform an actual call to stored
procedure inside Model::init() then set $table property to a temporary table:

class NominalReport extends \Atk4\Data\Model
{
 public $table = 'temp_nominal_sheet';
 public bool $readOnly = true; // instructs rest of the app, that this model is read-only

 protected function init(): void
 {
 parent::init();

 $res = $this->expr('call get_nominal_sheet([], [], \'2014-10-01\', \'2015-09-30\', 0)', [
 $this->getApp()->system->getId(),
 $this->getApp()->system['contractor_id'],
])->executeQuery();

 $this->addField('date', ['type' => 'date']);
 $this->addField('items', ['type' => 'integer']);
 ...
 }
}

as an Model Source

Important

Not all SQL vendors may support this approach.

Technically you can also specify expression as a $table property of your model:

class ClientReport extends \Atk4\Data\Model
{
 public $table; // will be set in init()
 public bool $readOnly = true; // instructs rest of the app, that this model is read-only

 protected function init(): void
 {
 parent::init();

 $this->init = $this->expr('call get_report_data()');

 $this->addField('date', ['type' => 'date']);
 $this->addField('items', ['type' => 'integer']);
 ...
 }
}

Technically this will give you select date, items from (call get_report_data()).

Static Persistence

	
class PersistenceStatic_

	

Static Persistence extends PersistenceArray_ to implement
a user-friendly way of specifying data through an array.

Usage

This is most useful when working with “sample” code, where you want to see your
results quick:

$table->setModel(new Model(new Persistence\Static_([
 ['VAT_rate' => '12.0%', 'VAT' => '36.00', 'Net' => '300.00'],
 ['VAT_rate' => '10.0%', 'VAT' => '52.00', 'Net' => '520.00'],
])));

Lets unwrap the example:

	
PersistenceStatic_::__construct()

	

Constructor accepts array as an argument, but the array could be in various forms:

- can be array of strings ['one', 'two']
- can be array of hashes. First hash will be examined to pick up fields
- can be array of arrays. Will name columns as 'field1', 'field2', 'field3'.

If you are using any fields without keys (numeric keys) it’s important that all
your records have same number of elements.

Static Persistence will also make attempt to deduce a “title” field and will set
it automatically for the model. If you have a field with key “name” then it will
be used.
Alternative it will check key “title”.

If neither are present you can still manually specify title field for your model.

Finally, static persistence (unlike :php:class:PersistenceArray_) will automatically
populate fields for the model and will even attempt to deduce field types.

Currently it recognizes integer, date, boolean, float, array and object types.
Other fields will appear as-is.

Saving Records

Models that you specify against static persistence will not be marked as
“Read Only” (Model::readOnly), and you will be allowed to save
data back. The data will only be stored inside persistence object and will be
discarded at the end of your PHP script.

References

	
class Model

	

	
ref($link, $details = []);

	

Models can relate one to another. The logic of traversing references, however,
is slightly different to the traditional ORM implementation, because in Agile
Data traversing also imposes conditions

There are two basic types of references: hasOne() and hasMany(), but it’s also
possible to add other reference types. The basic ones are really easy to
use:

$m = new Model_User($db, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class]]);
$m = $m->load(13);

$ordersForUser13 = $m->ref('Orders');

As mentioned - $ordersForUser13 will have it’s DataSet automatically adjusted
so that you could only access orders for the user with ID=13. The following is
also possible:

$m = new Model_User($db, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class]]);
$m->addCondition('is_vip', true);

$ordersForVips = $m->ref('Orders');
$ordersForVips = $ordersForVips->loadAny();

Condition on the base model will be carried over to the orders and you will
only be able to access orders that belong to VIP users. The query for loading
order will look like this:

select * from order where user_id in (
 select id from user where is_vip = 1
) limit 1

Argument $defaults will be passed to the new model that will be used to create
referenced model. This will not work if you have specified reference as existing
model that has a persistence set. (See Reference::getModel())

Persistence

Agile Data supports traversal between persistencies. The code above does not
explicitly assign database to Model_Order. But what if destination model does
not reside inside the same database?

You can specify it like this:

$m = new Model_User($dbArrayCache, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class, $dbSql]]);
$m->addCondition('is_vip', true);

$ordersForVips = $m->ref('Orders');

Now that a different databases are used, the queries can no longer be
joined so Agile Data will carry over list of IDs instead:

$ids = select id from user where is_vip = 1
select * from order where user_id in ($ids)

Since we are using $dbArrayCache, then field values will actually
be retrieved from memory.

Note

This is not implemented as of 1.1.0, see https://github.com/atk4/data/issues/158

Safety and Performance

When using ref() on hasMany reference, it will always return a fresh clone of
the model. You can perform actions on the clone and next time you execute ref()
you will get a fresh copy.

If you are worried about performance you can keep 2 models in memory:

$order = new Order($db);
$client = $order->refModel('client_id');

foreach ($order as $o) {
 $c = $client->load($o->get('client_id'));
}

Warning

This code is seriously flawed and is called “N+1 Problem”.
Agile Data discourages you from using this and instead offers you many
other tools: field importing, model joins, field actions and refLink().

hasMany Reference

	
hasMany($link, ['model' => $model]);

	

There are several ways how to link models with hasMany:

$m->hasMany('Orders', ['model' => [Model_Order::class]]); // using seed

$m->hasMany('Order', ['model' => function (Model $m, $r) { // using callback
 return new Model_Order();
}]);

Dealing with many-to-many references

It is possible to perform reference through an 3rd party table:

$i = new Model_Invoice();
$p = new Model_Payment();

// table invoice_payment has 'invoice_id', 'payment_id' and 'amount_allocated'

$p
 ->join('invoice_payment.payment_id')
 ->addFields(['amount_allocated', 'invoice_id']);

$i->hasMany('Payments', ['model' => $p]);

Now you can fetch all the payments associated with the invoice through:

$paymentsForInvoice1 = $i->load(1)->ref('Payments');

Dealing with NON-ID fields

Sometimes you have to use non-ID references. For example, we might have two models
describing list of currencies and for each currency we might have historic rates
available. Both models will relate through currency.code = exchange.currency_code:

$c = new Model_Currency();
$e = new Model_ExchangeRate();

$c->hasMany('Exchanges', ['model' => $e, 'theirField' => 'currency_code', 'ourField' => 'code']);

$c->addCondition('is_convertable', true);
$e = $c->ref('Exchanges');

This will produce the following query:

select * from exchange
where currency_code in
 (select code form currency where is_convertable = 1)

Concatenating Fields

You may want to display want to list your related entities by concatenating. For example:

$user->hasMany('Tags', ['model' => [Tag::class]])
 ->addField('tags', ['concat' => ',', 'field' => 'name']);

This will create a new field for your user, tags which will contain all comma-separated
tag names.

Add Aggregate Fields

Reference hasMany makes it a little simpler for you to define an aggregate fields:

$u = new Model_User($dbArrayCache, 'user');

$u->hasMany('Orders', ['model' => [Model_Order::class]])
 ->addField('amount', ['aggregate' => 'sum']);

It’s important to define aggregation functions here. This will add another field
inside $m that will correspond to the sum of all the orders. Here is another
example:

$u->hasMany('PaidOrders', (new Model_Order())->addCondition('is_paid', true))
 ->addField('paid_amount', ['aggregate' => 'sum', 'field' => 'amount']);

You can also define multiple fields, although you must remember that this will
keep making your query bigger and bigger:

$invoice->hasMany('Invoice_Line', ['model' => [Model_Invoice_Line::class]])
 ->addFields([
 ['total_vat', 'aggregate' => 'sum'],
 ['total_net', 'aggregate' => 'sum'],
 ['total_gross', 'aggregate' => 'sum'],
]);

Imported fields will preserve format of the field they reference. In the example,
if ‘Invoice_line’ field total_vat has type money then it will also be used
for a sum.

You can also specify a type yourself:

->addField('paid_amount', ['aggregate' => 'sum', 'field' => 'amount', 'type' => 'atk4_money']);

Aggregate fields are always declared read-only, and if you try to
change them ($m->set(‘paid_amount’, 123);), you will receive exception.

Available Aggregation Functions

The mathematical aggregate sum will automatically
default to 0 if no respective rows were provided. The default SQL behaviour is to
return NULL, but this does go well with the cascading formulas:

coalesce(sum([field]), 0);

For other functions, such as min, max, avg and non mathematical aggregates such
as group_concat no zero-coalesce will be used. Expect that result could be zero or
null.

When you specify ‘aggregate’ => ‘count’ field defaults to *.

Aggregate Expressions

Sometimes you want to use a more complex formula, and you may do so by specifying
expression into ‘aggregate’:

->addField('len', ['expr' => 'sum(length([name]))']),

You can reference fields by using square brackets here. Also you may pass args
containing your optional arguments:

->addField('len', [
 'expr' => 'sum(if([date] = [exp_date], 1, 0))',
 'args' => ['exp_date' => '2003-03-04],
]),

Alternatively you may also specify either ‘aggregate’:

$book->hasMany('Pages', ['model' => [Page::class]])
 ->addField('page_list', [
 'aggregate' => $book->refModel('Pages')->expr('group_concat([number], [])', ['-']),
]);

or ‘field’:

->addField('paid_amount', ['aggregate' => 'count', 'field' => new \Atk4\Data\Persistence\Sql\Expression('*')]);

Note

as of 1.3.4 count’s field defaults to * - no need to specify explicitly.

hasMany / refLink / refModel

	
Model::refLink($link)

	

Normally ref() will return a usable model back to you, however if you use refLink then
the conditioning will be done differently. refLink is useful when defining
sub-queries:

$m = new Model_User($dbArrayCache, 'user');
$m->hasMany('Orders', ['model' => [Model_Order::class]]);
$m->addCondition('is_vip', true);

$sum = $m->refLink('Orders')->action('fx0', ['sum', 'amount']);
$m->addExpression('sum_amount')->set($sum);

The refLink would define a condition on a query like this:

select * from `order` where user_id = `user`.id

And it will not be viable on its own, however if you use it inside a sub-query,
then it now makes sense for generating expression:

select
 (select sum(amount) from `order` where user_id = `user`.id) sum_amount
from user
where is_vip = 1

	
Model::refModel($link)

	

There are many situations when you need to get referenced model instead of
reference itself. In such case refModel() comes in as handy shortcut of doing
$model->refLink($link)->getModel().

hasOne reference

	
Model::hasOne($link[, 'model' => $model])

	$model can be an array containing options: [$model, …]

This reference allows you to attach a related model to a foreign key:

$o = new Model_Order($db, 'order');
$u = new Model_User($db, 'user');

$o->hasOne('user_id', ['model' => $u]);

This reference is similar to hasMany, but it does behave slightly different.
Also this reference will define a system new field user_id if you haven’t
done so already.

Traversing loaded model

If your $o model is loaded, then traversing into user will also load the user,
because we specifically know the ID of that user. No conditions will be set:

echo $o->load(3)->ref('user_id')['name']; // will show name of the user, of order #3

Traversing DataSet

If your model is not loaded then using ref() will traverse by conditioning
DataSet of the user model:

$o->unload(); // just to be sure!
$o->addCondition('status', 'failed');
$u = $o->ref('user_id');

$u = $u->loadAny(); // will load some user who has at least one failed order

The important point here is that no additional queries are generated in the
process and the loadAny() will look like this:

select * from user where id in
 (select user_id from order where status = 'failed')

By passing options to hasOne() you can also differentiate field name:

$o->addField('user_id', ['type' => 'integer']);
$o->hasOne('User', ['model' => $u, 'ourField' => 'user_id']);

$o->load(1)->ref('User')['name'];

You can also use theirField if you need non-id matching (see example above
for hasMany()).

Importing Fields

You can import some fields from related model. For example if you have list
of invoices, and each invoice contains “currency_id”, but in order to get the
currency name you need another table, you can use this syntax to easily import
the field:

$i = new Model_Invoice($db)
$c = new Model_Currency($db);

$i->hasOne('currency_id', ['model' => $c])
 ->addField('currency_name', 'name');

This code also resolves problem with a duplicate ‘name’ field. Since you might have
a ‘name’ field inside ‘Invoice’ already, you can name the field ‘currency_name’
which will reference ‘name’ field inside Currency. You can also import multiple
fields but keep in mind that this may make your query much longer.
The argument is associative array and if key is specified, then the field will
be renamed, just as we did above:

$u = new Model_User($db)
$a = new Model_Address($db);

$u->hasOne('address_id', ['model' => $a])
 ->addFields([
 'address_1',
 'address_2',
 'address_3',
 'address_notes' => ['notes', 'type' => 'text'],
]);

Above, all address_ fields are copied with the same name, however field
‘notes’ from Address model will be called ‘address_notes’ inside user model.

Important

When importing fields, they will preserve type, e.g. if you are importing
‘date’ then the type of your imported field will also be date. Imported
fields are also marked as “read-only” and attempt to change them will result
in exception.

Importing hasOne Title

When you are using hasOne() in most cases the referenced object will be addressed
through “ID” but will have a human-readable field as well. In the example above
Model_Currency has a title field called name. Agile Data provides you an
easier way how to define currency title:

$i = new Invoice($db)

$i->hasOne('currency_id', ['model' => [Currency::class]])
 ->addTitle();

This would create ‘currency’ field containing name of the currency:

$i = $i->load(20);

echo 'Currency for invoice 20 is ' . $i->get('currency'); // EUR

Unlike addField() which creates fields read-only, title field can in fact be
modified:

$i->set('currency', 'GBP');
$i->save();

// will update $i->get('currency_id') to the corresponding ID for currency with name GBP.

This behavior is awesome when you are importing large amounts of data, because
the lookup for the currency_id is entirely done in a database.

By default name of the field will be calculated by removing “_id” from the end
of hasOne field, but to override this, you can specify name of the title field
explicitly:

$i->hasOne('currency_id', ['model' => [Currency::class]])
 ->addTitle(['field' => 'currency_name']);

User-defined Reference

	
Model::addReference($link, $callback)

	

Sometimes you would want to have a different type of relation between models,
so with addReference you can define whatever reference you want:

$m->addReference('Archive', ['model' => function (Model $m) {
 return $m->newInstance(null, ['table' => $m->table . '_archive']);
}]);

The above example will work for a table structure where a main table user is
shadowed by a archive table user_archive. Structure of both tables are same,
and if you wish to look into an archive of a User you would do:

$user->ref('Archive');

Note that you can create one-to-many or many-to-one relations, by using your
custom logic.
No condition will be applied by default so it’s all up to you:

$m->addReference('Archive', ['model' => function (Model $m) {
 $archive = $m->newInstance(null, ['table' => $m->table . '_archive']);

 $m->addField('original_id', ['type' => 'integer']);

 if ($m->isLoaded())) {
 $archive->addCondition('original_id', $m->getId());
 // only show record of currently loaded record
 }
}]);

Reference Discovery

You can call Model::getReferences() to fetch all the references of a model:

$references = $model->getReferences();
$reference = $references['owner_id'];

or if you know the reference you’d like to fetch, you can use Model::getReference():

$reference = $model->getReference('owner_id');

While Model::ref() returns a related model, Model::getReference()
gives you the reference object itself so that you could perform some changes on it,
such as import more fields with Model::addField().

Or you can use Model::refModel() which will simply return referenced
model and you can do fancy things with it.

$refModel = $model->refModel(‘owner_id’);

You can also use Model::hasReference() to check if particular reference
exists in model:

if ($model->hasReference('owner_id')) {
 $reference = $model->getReference('owner_id');
}

Deep traversal

When operating with data-sets you can define references that use deep traversal:

echo $o->load(1)->ref('user_id')->ref('address_id')['address_1'];

The above example will actually perform 3 load operations, because as I have
explained above, Model::ref() loads related model when called on
a loaded model. To perform a single query instead, you can use:

echo $o->addCondition('id', 1)->ref('user_id')->ref('address_id')->loadAny()['address_1'];

Here addCondition('id', 1) will only set a condition without actually loading the record
and traversal will encapsulate sub-queries resulting in a query like this:

select * from address where id in
 (select address_id from user where id in
 (select user_id from order where id = 1))

Reference Aliases

When related entity relies on the same table it is possible to run into problem
when SQL is confused about which table to use.

select name, (select name from item where item.parent_id = item.id) parent_name from item

To avoid this problem Agile Data will automatically alias tables in sub-queries.
Here is how it works:

$item->hasMany('parent_item_id', ['model' => [Model_Item::class]])
 ->addField('parent', 'name');

When generating expression for ‘parent’, the sub-query will use alias pi
consisting of first letters in ‘parent_item_id’. (except _id). You can actually
specify a custom table alias if you want:

$item->hasMany('parent_item_id', ['model' => [Model_Item::class], 'tableAlias' => 'mypi'])
 ->addField('parent', 'name');

Additionally you can pass tableAlias as second argument into Model::ref()
or Model::refLink(). This can help you in creating a recursive models
that relate to itself. Here is example:

class Model_Item3 extends \Atk4\Data\Model
{
 public $table = 'item';

 protected function init(): void
 {
 parent::init();

 $m = new Model_Item3();

 $this->addField('name');
 $this->addField('age');
 $i2 = $this->join('item2.item_id');
 $i2->hasOne('parent_item_id', ['model' => $m, 'tableAlias' => 'parent'])
 ->addTitle();

 $this->hasMany('Child', ['model' => $m, 'theirField' => 'parent_item_id', 'tableAlias' => 'child'])
 ->addField('child_age', ['aggregate' => 'sum', 'field' => 'age']);
 }
}

Loading model like that can produce a pretty sophisticated query:

select
 `pp`.`id`, `pp`.`name`, `pp`.`age`, `pp_i`.`parent_item_id`,
 (select `parent`.`name`
 from `item` `parent`
 left join `item2` as `parent_i` on `parent_i`.`item_id` = `parent`.`id`
 where `parent`.`id` = `pp_i`.`parent_item_id`
) `parent_item`,
 (select sum(`child`.`age`) from `item` `child`
 left join `item2` as `child_i` on `child_i`.`item_id` = `child`.`id`
 where `child_i`.`parent_item_id` = `pp`.`id`
) `child_age`, `pp`.`id` `_i`
from `item` `pp`left join `item2` as `pp_i` on `pp_i`.`item_id` = `pp`.`id`

Various ways to specify options

When calling hasOne()->addFields() there are various ways to pass options:

	addFields([‘name’, ‘dob’]) - no options are passed, use defaults. Note that
reference will not fetch the type of foreign field due to performance consideration.

	addFields([‘first_name’ => ‘name’]) - this indicates aliasing. Field name
will be added as first_name.

	addFields([[‘dob’, ‘type’ => ‘date’]]) - wrap inside array to pass options to
field

	addFields([‘the_date’ => [‘dob’, ‘type’ => ‘date’]]) - combination of aliasing
and options

	addFields([‘dob’, ‘dod’], [‘type’ => ‘date’]) - passing defaults for multiple
fields

References with New Records

Agile Data takes extra care to help you link your new records with new related
entities.
Consider the following two models:

class Model_User extends \Atk4\Data\Model
{
 public $table = 'user';

 protected function init(): void
 {
 parent::init();

 $this->addField('name');

 $this->hasOne('contact_id', ['model' => [Model_Contact::class]]);
 }
}

class Model_Contact extends \Atk4\Data\Model
{
 public $table = 'contact';

 protected function init(): void
 {
 parent::init();

 $this->addField('address');
 }
}

This is a classic one to one reference, but let’s look what happens when you are
working with a new model:

$m = new Model_User($db);

$m->set('name', 'John');
$m->save();

In this scenario, a new record will be added into ‘user’ with ‘contact_id’ equal
to null. The next example will traverse into the contact to set it up:

$m = new Model_User($db);

$m->set('name', 'John');
$m->ref('address_id')->save(['address' => 'street']);
$m->save();

When entity which you have referenced through ref() is saved, it will automatically
populate $m->get(‘contact_id’) field and the final $m->save() will also store the reference.

ID setting is implemented through a basic hook. Related model will have afterSave
hook, which will update address_id field of the $m.

Reference Classes

References are implemented through several classes:

	
class ReferenceHasOne

	Defines generic reference, that is typically created by Model::addReference

	
property ReferenceHasOne::$tableAlias

	Alias for related table. Because multiple references can point to the same
table, ability to have unique alias is pretty good.

You don’t have to change this property, it is generated automatically.

	
property ReferenceHasOne::$link

	What should we pass into owner->ref() to get through to this reference.
Each reference has a unique identifier, although it’s stored
in Model’s elements as ‘#ref-xx’.

	
property ReferenceHasOne::$model

	May store reference to related model, depending on implementation.

	
property ReferenceHasOne::$ourField

	This is an optional property which can be used by your implementation
to store field-level relationship based on a common field matching.

	
property ReferenceHasOne::$their_filed

	This is an optional property which can be used by your implementation
to store field-level relationship based on a common field matching.

	
ReferenceHasOne::getModel()

	Returns referenced model without conditions.

	
ReferenceHasOne::ref()

	Returns referenced model WITH conditions. (if possible)

Expressions

	
class Model

	

You already know that you can define fields inside your Model with addField.
While a regular field maps to physical field inside your database, sometimes you
want to do something different - execute expression or function inside SQL and
use result as an output.

Expressions solve this problem by adding a read-only field to your model that
corresponds to an expression:

	
addExpression($name, $seed);

	

Example will calculate “total_gross” by adding up values for “net” and “vat”:

$m = new Model_Invoice($db);
$m->addField('total_net');
$m->addField('total_vat');
$m->addExpression('total_gross', ['expr' => '[total_net] + [total_vat]']);

$m = $m->load(1);

echo $m->get('total_gross');

The query using during load() will look like this:

select
 `id`, `total_net`, `total_vat`,
 (`total_net`+`total_vat`) `total_gross`
from `invoice`',

Defining Expression

The simplest format to define expression is by simply passing a string. The
argument is executed through Model::expr() which automatically substitutes
values for the other fields including other expressions.

There are other ways how you can specify expression:

$m->addExpression('total_gross', [
 'expr' => $m->expr('[total_net] + [total_vat] + [fee]', ['fee' => $fee]),
]);

This format allow you to supply additional parameters inside expression.
You should always use parameters instead of appending values inside your
expression string (for safety)

You can also use expressions to pass a select action for a specific field:

No-table Model Expression

Agile Data allows you to define a model without table. While this may have
no purpose initially, it does come in handy in some cases, when you need to
unite a few statistical queries. Let’s start by looking a at a very basic
example:

$m = new Model($db, ['table' => false]);
$m->addExpression('now', ['expr' => 'now()']);
$m = $m->loadAny();
echo $m->get('now');

In this example the query will look like this:

select (1) `id`, (now()) `now` limit 1

so that $m->getId() will always be 1 which will make it a model that you can
actually use consistently throughout the system. The real benefit from this
can be gained when you need to pull various statistical values from your
database at once:

$m = new Model($db, ['table' => false]);
$m->addExpression('total_orders', ['expr' => (new Model_Order($db))->action('count')]);
$m->addExpression('total_payments', ['expr' => (new Model_Payment($db))->action('count')]);
$m->addExpression('total_received', ['expr' => (new Model_Payment($db))->action('fx0', ['sum', 'amount'])]);

$data = $m->loadOne()->get();

Of course you can also use a DSQL for this:

$q = $db->dsql();
$q->field(new Model_Order($db)->action('count'), 'total_orders');
$q->field(new Model_Payment($db)->action('count'), 'total_orders');
$q->field(new Model_Payment($db)->action('fx0', ['sum', 'amount']), 'total_received');
$data = $q->getRow();

You can decide for yourself based on circumstances.

Expression Callback

You can use a callback method when defining expression:

$m->addExpression('total_gross', ['expr' => function (Model $m, Expression $q) {
 return '[total_net] + [total_vat]';
}, 'type' => 'float']);

Model Reloading after Save

When you add SQL Expressions into your model, that means that some of the fields
might be out of sync and you might need your SQL to recalculate those expressions.

To simplify your life, Agile Data implements smart model reloading. Consider
the following model:

class Model_Math extends \Atk4\Data\Model
{
 public $table = 'math';

 protected function init(): void
 {
 parent::init();

 $this->addField('a');
 $this->addField('b');

 $this->addExpression('sum', ['expr' => '[a] + [b]']);
 }
}

$m = new Model_Math($db);
$m->set('a', 4);
$m->set('b', 6);

$m->save();

echo $m->get('sum');

When $m->save() is executed, Agile Data will perform reloading of the model.
This is to ensure that expression ‘sum’ would be re-calculated for the values of
4 and 6 so the final line will output a desired result - 10;

Reload after save will only be executed if you have defined any expressions
inside your model, however you can affect this behavior:

$m = new Model_Math($db, ['reloadAfterSave' => false]);
$m->set('a', 4);
$m->set('b', 6);

$m->save();

echo $m->get('sum'); // outputs null

$m->reload();
echo $m->get('sum'); // outputs 10

Now it requires an explicit reload for your model to fetch the result. There
is another scenario when your database defines default fields:

alter table math change b b int default 10;

Then try the following code:

class Model_Math extends \Atk4\Data\Model
{
 public $table = 'math';

 protected function init(): void
 {
 parent::init();

 $this->addField('a');
 $this->addField('b');
 }
}

$m = new Model_Math($db);
$m->set('a', 4);

$m->save();

echo $m->get('a')+$m->get('b');

This will output 4, because model didn’t reload itself due to lack of any
expressions. This time you can explicitly enable reload after save:

$m = new Model_Math($db, ['reloadAfterSave' => true]);
$m->set('a', 4);

$m->save();

echo $m->get('a')+$m->get('b'); // outputs 14

Note

If your model is using reloadAfterSave, but you wish to insert
data without additional query - use Model::insert() or
Model::import().

Model from multiple joined tables

	
class Atk4\Data\Model\Join

	

Sometimes model logically contains information that is stored in various places
in the database. Your database may want to split up logical information into
tables for various reasons, such as to avoid repetition or to better optimize
indexes.

Join Basics

Agile Data allows you to map multiple table fields into a single business model
by using joins:

$user->addField('username');
$jContact = $user->join('contact');
$jContact->addField('address');
$jContact->addField('county');
$jContact->hasOne('Country');

This code will load data from two tables simultaneously and if you do change any
of those fields they will be update in their respective tables. With SQL the
load query would look like this:

select
 u.username, c.address, c.county, c.country_id
 (select name from country where country.id = c.country_id) country
from user u
join contact c on c.id = u.contact_id
where u.id = $id

If driver is unable to query both tables simultaneously, then it will load one
record first, then load other record and will collect fields together:

$user = $user->load($id);
$contact = $contact->load($user->get('contact_id'));

When saving the record, Joins will automatically record data correctly:

insert into contact (address, county, country_id) values ($, $, $);
@join_c = last_insert_id();
insert into user (username, contact_id) values ($, @join_c)

Strong and Weak joins

When you are joining tables, then by default a strong join is used. That means
that both records are not-nullable and when adding records, they will both be added
and linked.

Weak join is used if you do not really want to modify the other table.
For example it can be used to pull country information based on user.country_id
but you wouldn’t want that adding a new user would create a new country:

$user->addField('username');
$user->addField('country_id', ['type' => 'integer']);
$jCountry = $user->join('country', ['weak' => true, 'prefix' => 'country_']);
$jCountry->addField('code');
$jCountry->addField('name');
$jCountry->addField('default_currency', ['prefix' => false]);

After this you will have the following fields in your model:

	username

	country_id

	country_code [readOnly]

	country_name [readOnly]

	default_currency [readOnly]

Join relationship definitions

When defining joins, you need to outline two fields that must match. In our
earlier examples, we the master table was “user” that contained reference to
“contact”. The condition would look like this user.contact_id=contact.id.
In some cases, however, a relation should be reversed:

$jContact = $user->join('contact.user_id');

This will result in the following join condition: user.id=contact.user_id.
The first argument to join defines both the table that we need to join and
can optionally define the field in the foreign table. If field is set, we will
assume that it’s a reverse join.

Reverse joins are saved in the opposite order - primary table will be saved
first and when id of a primary table is known, foreign table record is stored
and ID is supplied. You can pass option ‘masterField’ to the join() which will
specify which field to be used for matching. By default the field is calculated
like this: foreignTable . ‘_id’. Here is usage example:

$user->addField('username');
$jCreditCard = $user->join('credit_card', [
 'prefix' => 'cc_',
 'masterField' => 'default_credit_card_id',
]);
$jCreditCard->addField('integer'); // creates cc_number
$jCreditCard->addField('name'); // creates cc_name

Master field can also be specified as an object of a Field class.

There are more options that you can pass inside join(), but those are
vendor-specific and you’ll have to look into documentation for sqlJoin and
mongoJoin respectfully.

Method Proxying

Once your join is defined, you can call several methods on the join objects, that
will create fields, other joins or expressions but those would be associated
with a foreign table.

	
Atk4\Data\Model\Join::addField()

	same as Model::addField but associates field with foreign table.

	
Atk4\Data\Model\Join::join()

	same as Model::join but links new table with this foreign table.

	
Atk4\Data\Model\Join::hasOne()

	same as Model::hasOne but reference ID field will be associated
with foreign table.

	
Atk4\Data\Model\Join::hasMany()

	same as Model::hasMany but condition for related model will be
based on foreign table field and Reference::theirField will be
set to $foreignTable . ‘_id’.

	
Atk4\Data\Model\Join::containsOne()

	same as Model::hasOne but the data will be stored in
a field inside foreign table.

Not yet implemented !

	
Atk4\Data\Model\Join::containsMany()

	same as Model::hasMany but the data will be stored in
a field inside foreign table.

Not yet implemented !

Create and Delete behavior

Updating joined records are simple, but when it comes to creation and deletion,
there are some conditions. First we look at dependency. If master table contains
id of a foreign table, then foreign table record must be created first, so that
we can store its ID in a master table. If the join is reversed, the master
record is created first and then foreign record is inserted along with the value
of master id.

When it comes to deleting record, there are three possible conditions:

	[delete_behaivour = cascade, reverse = false]
If we are using strong join and master table contains ID of foreign table,
then foreign master table record is deleted first. Foreign table record is
deleted after. This is done to avoid error with foreign constraints.

	[deleteBehaviour = cascade, reverse = true]
If we are using strong join and foreign table contains ID of master table,
then foreign table record is deleted first followed by the master table record.

	[deleteBehaviour = ignore, reverse = false]
If we are using weak join and the master table contains ID of foreign table,
then master table is deleted first. Foreign table record is not deleted.

	[deleteBehaviour = setnull, reverse = true]
If we are using weak join and foreign table contains ID of master table,
then foreign table is updated to set ID of master table to NULL first.
Then the master table record is deleted.

Based on the way how you define join an appropriate strategy is selected and
Join will automatically decide on $deleteBehaviour and $reverse values.
There are situations, however when it’s impossible to determine in which order
the operations have to be performed. A good example is when you define both
master/foreign fields.

In this case system will default to “reverse=false” and will delete master
record first, however you can specify a different value for “reverse”.

Sometimes it’s also sensible to set deleteBehaviour = ignore and perform your
own delete operation yourself.

Implementation Detail

Joins are implemented like this:

	all the fields that has ‘joinName’ property set will not be saved into default
table by default driver

	join will add either beforeInsert or afterInsert hook inside your model.
When save is executed, it will execute additional query to update foreign table.

	while $model->getId() stores the ID of the main table active record, $join->id
stores ID of the foreign record and will be used when updating.

	option ‘deleteBehaviour’ is ‘cascade’ for strong joins and ‘ignore’ for weak
joins, but you can set some other value. If you use “setnull” value and you
are using reverse join, then foreign table record will not be updated, but
value of the foreign field will be set to null.

	
class Atk4\Data\Model\JoinSql

	

SQL-specific joins

When your model is associated with SQL-capable driver, then instead of using
Join class, the Join\Sql is used instead. This class is designed to improve
loading technique, because SQL vendors can query multiple tables simultaneously.

Vendors that cannot do JOINs will have to implement compatibility by pulling
data from collections in a correct order.

Implementation Details

	although some SQL vendors allow update .. join .. syntax, this will not be
used. That is done to ensure better compatibility.

	when field has the ‘joinName’ option set, trying to convert this field into
expression will prefix the field properly with the foreign table alias.

	join will be added in all queries

	strong join can potentially reduce your data-set as it exclude table rows
that cannot be matched with foreign table row.

Specifying complex ON logic

When you’re dealing with SQL drivers, you can specify Atk4DataPersistenceSqlExpression for your
“on” clause:

$stats = $user->join('stats', [
 'on' => $user->expr('year({}) = _st.year'),
 'foreignAlias' => '_st',
]);

You can also specify 'on' => false then the ON clause will not be used at all
and you’ll have to add additional where() condition yourself.

foreignAlias can be specified and will be used as table alias and prefix
for all fields. It will default to '_' . $this->foreignTable. Agile Data will
also resolve situations when multiple tables have same first character so the
prefixes will be named ‘_c’, ‘_c_2’, ‘_c_3’ etc.

Additional arguments accepted by SQL joins are:

	‘kind’ - will be “inner” for strong join and “left” for weak join, but you can
specify other kind of join, for example, “right”’.

Model Aggregates

	
class Atk4\Data\Model\AggregateModel

	

In order to create model aggregates the AggregateModel model needs to be used:

Grouping

AggregateModel model can be used for grouping:

$aggregate = new AggregateModel($orders)->setGroupBy(['country_id']);

$aggregate above is a new object that is most appropriate for the model’s persistence and which can be manipulated
in various ways to fine-tune aggregation. Below is one sample use:

$aggregate = new AggregateModel($orders);
$aggregate->addField('country');
$aggregate->setGroupBy(['country_id'], [
 'count' => ['expr' => 'count(*)', 'type' => 'integer'],
 'total_amount' => ['expr' => 'sum([amount])', 'type' => 'atk4_money'],
],
);

// $aggregate will have following rows:
// ['country' => 'UK', 'count' => 20, 'total_amount' => 123.2];
// ..

Below is how opening balance can be built:

$ledger = new GeneralLedger($db);
$ledger->addCondition('date', '<', $from);

// we actually need grouping by nominal
$ledger->setGroupBy(['nominal_id'], [
 'opening_balance' => ['expr' => 'sum([amount])', 'type' => 'atk4_money'],
]);

Hooks

Hook is a mechanism for adding callbacks. The core features of Hook sub-system
(explained in detail here http://agile-core.readthedocs.io/en/develop/hook.html)
include:

	ability to define “spots” in PHP code, such as “beforeLoad”.

	ability to add callbacks to be executed when PHP goes over the spot.

	prioritization of callbacks

	ability to pass arguments to callbacks

	ability to collect response from callbacks

	ability to break hooks (will stop any other hook execution)

Model implements hook trait and defines various hooks which will allow
you to execute code before or after various operations, such as save, load etc.

Model Operation Hooks

All of model operations (adding, updating, loading and deleting) have two
hooks - one that executes before operation and another that executes after.

Those hooks are database-agnostic, so regardless where you save your model data,
your beforeSave hook will be triggered.

If database has transaction support, then hooks will be executed while inside
the same transaction:

	begin transaction

	beforeSave hook

	actual save

	reload (see Model::reloadAfterSave)

	afterSave hook

	commit transaction

In case of error:

	do rollback

	call onRollback hook

If your afterSave hook creates exception, then the entire operation will be
rolled back.

Example with beforeSave

The next code snippet demonstrates a basic usage of a beforeSave hook.
This one will update field values just before record is saved:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 $m->set('name', strtoupper($m->get('name')));
 $m->set('surname', strtoupper($m->get('surname')));
});

$m->insert(['name' => 'John', 'surname' => 'Smith']);

// Will save into DB: ['name' => 'JOHN', 'surname' => 'SMITH'];

Arguments

When you define a callback, then you’ll receive reference to model from all the
hooks.
It’s important that you use this argument instead of $this to perform operation,
otherwise you can run into problems with cloned models.

Callbacks does non expect anything to be returned, but you can modify fields
of the model.

Interrupting

You can also break all “before” hooks which will result in cancellation of the
original action:

$m->breakHook(false);

If you break beforeSave, then the save operation will not take place, although
model will assume the operation was successful.

You can also break beforeLoad hook which can be used to skip rows:

$model->onHook(Model::HOOK_AFTER_LOAD, function (Model $m) {
 if ($m->get('date') < $m->date_from) {
 $m->breakHook(false); // will not yield such data row
 }
 // otherwise yields data row
});

This will also prevent data from being loaded. If you return false from
afterLoad hook, then record which we just loaded will be instantly unloaded.
This can be helpful in some cases, although you should still use
Model::addCondition where possible as it is much more efficient.

Insert/Update Hooks

Insert/Update are triggered from inside save() method but are based on current
state of Model::isLoaded:

	beforeInsert($m, &$data) (creating new records only)

	afterInsert($m, $id)

	beforeUpdate($m, &$data) (updating existing records only. Not executed if model is not dirty)

	afterUpdate($m)

The $data argument will contain array of actual data (field => value) to be saved,
which you can use to withdraw certain fields from actually being saved into the
database (by unsetting it’s value).

Note that altering data via $m->set() does not work in beforeInsert and beforeUpdate
hooks, only by altering $data.

afterInsert will receive either $id of new record or null if model couldn’t
provide ID field. Also, afterInsert is actually called before reloading is done
(when Model::reloadAfterSave is set).

For some examples, see Soft Delete

beforeSave, afterSave Hook

A good place to hook is beforeSave as it will be fired when adding new records
or modifying existing ones:

	beforeSave($m) (saving existing or new records. Not executed if model is not dirty)

	afterSave($m, $isUpdate) (same as above, $isUpdate is boolean true if it was update and false otherwise)

You might consider “save” to be a higher level hook, as beforeSave is called
pretty early on during saving the record and afterSave is called at the very end
of save.

You may actually drop validation exception inside save, insert or update hooks:

$m->onHook(Model::HOOK_BEFORE_SAVE, function (Model $m) {
 if ($m->get('name') === 'Yagi') {
 throw new \Atk4\Data\ValidationException(['name' => "We don't serve like you"]);
 }
});

Loading, Deleting

Those are relatively simple hooks:

	beforeLoad($m, $id) ($m will be unloaded). Break for custom load or skip.

	afterLoad($m). ($m will contain data). Break to unload and skip.

For the deletion it’s pretty similar:

	beforeDelete($m, $id). Unload and Break to preserve record.

	afterDelete($m, $id).

A good place to clean-up delete related records would be inside afterDelete,
although if your database consistency requires those related records to be
cleaned up first, use beforeDelete instead.

For some examples, see Soft Delete

Hook execution sequence

	beforeSave

	beforeInsert [only if insert]
- beforeInsertQuery [sql only] (query)
- afterInsertQuery (query, affectedRows)

	beforeUpdate [only if update]
- beforeUpdateQuery [sql only] (query)
- afterUpdateQuery (query, affectedRows)

	afterUpdate [only if existing record, model is reloaded]

	afterInsert [only if new record, model not reloaded yet]

	beforeUnload

	afterUnload

	afterSave (bool $isUpdate) [after insert or update, model is reloaded]

How to prevent actions

In some cases you want to prevent default actions from executing.
Suppose you want to check ‘memcache’ before actually loading the record from
the database. Here is how you can implement this functionality:

$m->onHook(Model::HOOK_BEFORE_LOAD, function (Model $m, $id) {
 $data = $m->getApp()->cacheFetch($m->table, $id);
 if ($data) {
 $dataRef = &$m->getDataRef();
 $dataRef = $data;
 $m->setId($id);

 $m->breakHook($m);
 }
});

$app property is injected through your $db object and is passed around to all
the models. This hook, if successful, will prevent further execution of other
beforeLoad hooks and by specifying argument as ‘false’ it will also prevent call
to $persistence for actual loading of the data.

Similarly you can prevent deletion if you wish to implement
soft-delete or stop insert/modify from occurring.

onRollback Hook

This hook is executed right after transaction fails and rollback is done.
This can be used in various situations.

Save information into auditLog about failure:

	$m->onHook(Model::HOOK_ROLLBACK, function (Model $m) {

	$m->auditLog->registerFailure();

});

Upgrade schema:

use Atk4DataPersistenceSqlException as SqlException;

	$m->onHook(Model::HOOK_ROLLBACK, function (Model $m, Throwable $exception) {

	
	if ($exception instanceof SqlException) {

	$m->schema->upgrade();
$m->breakHook(false); // exception will not be thrown

}

});

In first example we will register failure in audit log, but afterwards still throw exception.
In second example we will upgrade model schema and will not throw exception at all because we
break hook and return false boolean value.

Persistence Hooks

Persistence has a few spots which it actually executes through $model->hook(),
so depending on where you save the data, there are some more hooks available.

PersistenceSql

Those hooks can be used to affect queries before they are executed.
None of these are breakable:

	beforeUpdateQuery($m, Query $query)

	afterUpdateQuery($m, Query $query, int $affectedRows). Executed before retrieving data.

	beforeInsertQUery($m, Query $query)

	afterInsertQuery($m, Query $query, int $affectedRows). Executed before retrieving data.

The delete has only “before” hook:

	beforeDeleteQuery($m, Query $query)

Finally for queries there is hook initSelectQuery($model, $query, $type).
It can be used to enhance queries generated by “action” for:

	“count”

	“update”

	“delete”

	“select”

	“field”

	“fx” or “fx0”

Other Hooks:

Advanced Topics

Agile Data allow you to implement various tricks.

SubTypes

Disjoint subtypes is a concept where you give your database just a little bit of
OOP by allowing to extend addional types without duplicating columns. For example,
if you are implementing “Account” and “Transaction” models. You may want to have
multiple transaction types. Some of those types would even require additional
fields. The pattern suggest you should add a new table “transaction_transfer” and
store extra fields there. In your code:

class Transaction_Transfer extends Transaction
{
 protected function init(): void
 {
 parent::init();

 $j = $this->join('transaction_transfer.transaction_id');
 $j->addField('destination_account');
 }
}

As you implement single Account and multiple Transaction types, you want to relate
both:

$account->hasMany('Transactions', ['model' => [Transaction::class]]);

There are however two difficulties here:

	sometimes you want to operate with specific sub-type.

	when iterating, you want to have appropriate class, not Transaction()

Best practice for specifying relation type

Although there is no magic behind it, I recommend that you use the following
code pattern when dealing with multiple types:

$account->hasMany('Transactions', ['model' => [Transaction::class]]);
$account->hasMany('Transactions:Deposit', ['model' => [Transaction\Deposit::class]]);
$account->hasMany('Transactions:Transfer', ['model' => [Transaction\Transfer::class]]);

You can then use type-specific reference:

$account->ref('Transaction:Deposit')->insert(['amount' => 10]);

and the code would be clean. If you introduce new type, you would have to add
extra line to your “Account” model, but it will not be impacting anything, so
that should be pretty safe.

Type substitution on loading

Another technique is for ATK Data to replace your object when data is being
loaded. You can treat “Transaction” class as a “shim”:

$obj = $account->ref('Transactions')->load(123);

Normally $obj would be instance of Transaction class, however we want this
class to be selected based on transaction type. Therefore a more broad
record for ‘Transaction’ should be loaded first and then, if necessary,
replaced with the correct class transparently, so that the code above
would work without a change.

Another scenario which could benefit by type substitution would be:

foreach ($account->ref('Transactions') as $tr) {
 echo get_class($tr) . "\n";
}

ATK Data allow class substitution during load and iteration by breaking “afterLoad”
hook. Place the following inside Transaction::init():

$this->onHookShort(Model::HOOK_AFTER_LOAD, function () {
 if (get_class($this) != $this->getClassName()) {
 $cl = $this->getClassName();
 $m = new $cl($this->getModel()->getPersistence());
 $m = $m->load($this->getId());

 $this->breakHook($m);
 }
});

You would need to implement method “getClassName” which would return DESIRED class
of the record. Finally to help with performance, you can implement a switch:

public $typeSubstitution = false;

...

protected function init(): void
{
 ...

 if ($this->typeSubstitution) {
 $this->onHook(Model::HOOK_AFTER_LOAD,
 ...
)
 }
}

Now, every time you iterate (or load) you can decide if you want to invoke type
substitution:

foreach ($account->ref('Transactions', ['typeSubstitution' => true]) as $tr) {
 $tr->verify(); // verify() method can be overloaded!
}

// however, for export, we don't need expensive substitution
$transactionData = $account->ref('Transaction')->export();

Audit Fields

If you wish to have a certain field inside your models that will be automatically
changed when the record is being updated, this can be easily implemented in
Agile Data.

I will be looking to create the following fields:

	created_dts

	updated_dts

	created_by_user_id

	updated_by_user_id

To implement the above, I’ll create a new class:

class ControllerAudit
{
 use \Atk4\Core\InitializerTrait {
 init as private _init;
 }
 use \Atk4\Core\TrackableTrait;
 use \Atk4\Core\AppScopeTrait;
}

TrackableTrait means that I’ll be able to add this object inside model with
$model->add(new ControllerAudit()) and that will automatically populate
$owner, and $app values (due to AppScopeTrait) as well as execute init() method,
which I want to define like this:

protected function init(): void
{
 $this->_init();

 if (isset($this->getOwner()->no_audit)) {
 return;
 }

 $this->getOwner()->addField('created_dts', ['type' => 'datetime', 'default' => new \DateTime()]);

 $this->getOwner()->hasOne('created_by_user_id', 'User');
 if (isset($this->getApp()->user) && $this->getApp()->user->isLoaded()) {
 $this->getOwner()->getField('created_by_user_id')->default = $this->getApp()->user->getId();
 }

 $this->getOwner()->hasOne('updated_by_user_id', 'User');

 $this->getOwner()->addField('updated_dts', ['type' => 'datetime']);

 $this->getOwner()->onHook(Model::HOOK_BEFORE_UPDATE, function (Model $m, array $data) {
 if (isset($this->getApp()->user) && $this->getApp()->user->isLoaded()) {
 $data['updated_by'] = $this->getApp()->user->getId();
 }
 $data['updated_dts'] = new \DateTime();
 });
}

In order to add your defined behavior to the model. The first check actually
allows you to define models that will bypass audit altogether:

$u1 = new Model_User($db); // Model_User::init() includes audit

$u2 = new Model_User($db, ['no_audit' => true]); // will exclude audit features

Next we are going to define ‘created_dts’ field which will default to the
current date and time.

The default value for our ‘created_by_user_id’ field would depend on a currently
logged-in user, which would typically be accessible through your application.
AppScope allows you to pass $app around through all the objects, which means
that your Audit Controller will be able to get the current user.

Of course if the application is not defined, no default is set. This would be
handy for unit tests where you could manually specify the value for this field.

The last 2 fields (update_*) will be updated through a hook - beforeUpdate() and
will provide the values to be saved during save(). beforeUpdate() will not
be called when new record is inserted, so those fields will be left as “null”
after initial insert.

If you wish, you can modify the code and insert historical records into other
table.

Soft Delete

Most of the data frameworks provide some way to enable ‘soft-delete’ for tables
as a core feature. Design of Agile Data makes it possible to implement soft-delete
through external controller. There may be a 3rd party controller for comprehensive
soft-delete, but in this section I’ll explain how you can easily build your own
soft-delete controller for Agile Data (for educational purposes).

Start by creating a class:

class ControllerSoftDelete
{
 use \Atk4\Core\InitializerTrait {
 init as private _init;
 }
 use \Atk4\Core\TrackableTrait;

 protected function init(): void
 {
 $this->_init();

 if (property_exists($this->getOwner(), 'no_soft_delete')) {
 return;
 }

 $this->getOwner()->addField('is_deleted', ['type' => 'boolean']);

 if (property_exists($this->getOwner(), 'deleted_only') && $this->getOwner()->deleted_only) {
 $this->getOwner()->addCondition('is_deleted', true);
 $this->getOwner()->addMethod('restore', \Closure::fromCallable([$this, 'restore']));
 } else {
 $this->getOwner()->addCondition('is_deleted', false);
 $this->getOwner()->addMethod('softDelete', \Closure::fromCallable([$this, 'softDelete']));
 }
 }

 public function softDelete(Model $entity)
 {
 $entity->assertIsLoaded();

 $id = $entity->getId();
 if ($entity->hook('beforeSoftDelete') === false) {
 return $entity;
 }

 $entity->saveAndUnload(['is_deleted' => true]);

 $entity->hook('afterSoftDelete', [$id]);

 return $entity;
 }

 public function restore(Model $entity)
 {
 $entity->assertIsLoaded();

 $id = $entity->getId();
 if ($entity->hook('beforeRestore') === false) {
 return $entity;
 }

 $entity->saveAndUnload(['is_deleted' => false]);

 $entity->hook('afterRestore', [$id]);

 return $entity;
 }
}

This implementation of soft-delete can be turned off by setting model’s property
‘deleted_only’ to true (if you want to recover a record).

When active, a new field will be defined ‘is_deleted’ and a new dynamic method
will be added into a model, allowing you to do this:

$m = new Model_Invoice($db);
$m = $m->load(10);
$m->softDelete();

The method body is actually defined in our controller. Notice that we have
defined 2 hooks - beforeSoftDelete and afterSoftDelete that work similarly to
beforeDelete and afterDelete.

beforeSoftDelete will allow you to “break” it in certain cases to bypass the
rest of method, again, this is to maintain consistency with the rest of before*
hooks in Agile Data.

Hooks are called through the model, so your call-back will automatically receive
first argument $m, and afterSoftDelete will pass second argument - $id of deleted
record.

I am then setting reloadAfterSave value to false, because after I set
‘is_deleted’ to false, $m will no longer be able to load the record - it will
fall outside of the DataSet. (We might implement a better method for saving
records outside of DataSet in the future).

After softDelete active record is unloaded, mimicking behavior of delete().

It’s also possible for you to easily look at deleted records and even restore
them:

$m = new Model_Invoice($db, ['deleted_only' => true]);
$m = $m->load(10);
$m->restore();

Note that you can call $m->delete() still on any record to permanently delete it.

Soft Delete that overrides default delete()

In case you want $m->delete() to perform soft-delete for you - this can also be
achieved through a pretty simple controller. In fact I’m reusing the one from
before and just slightly modifying it:

class ControllerSoftDelete2 extends ControllerSoftDelete
{
 protected function init(): void
 {
 parent::init();

 $this->getOwner()->onHook(Model::HOOK_BEFORE_DELETE, \Closure::fromCallable([$this, 'softDelete']), null, 100);
 }

 public function softDelete(Model $entity)
 {
 parent::softDelete();

 $entity->hook(Model::HOOK_AFTER_DELETE);

 $entity->breakHook(false); // this will cancel original delete()
 }
}

Implementation of this controller is similar to the one above, however instead
of creating softDelete() it overrides the delete() method through a hook.
It will still call ‘afterDelete’ to mimic the behavior of regular delete() after
the record is marked as deleted and unloaded.

You can still access the deleted records:

$m = new Model_Invoice($db, ['deleted_only' => true]);
$m = $m->load(10);
$m->restore();

Calling delete() on the model with ‘deleted_only’ property will delete it
permanently.

Creating Unique Field

Database can has UNIQUE constraint, but this does work if you use DataSet.
For instance, you may be only able to create one ‘Category’ with name ‘Book’,
but what if there is a soft-deleted record with same name or record that belongs
to another user?

With Agile Data you can create controller that will ensure that certain fields
inside your model are unique:

class ControllerUniqueFields
{
 use \Atk4\Core\InitializerTrait {
 init as private _init;
 }
 use \Atk4\Core\TrackableTrait;

 protected $fields = null;

 protected function init(): void
 {
 $this->_init();

 // by default make 'name' unique
 if (!$this->fields) {
 $this->fields = [$this->getOwner()->titleField];
 }

 $this->getOwner()->onHook(Model::HOOK_BEFORE_SAVE, \Closure::fromCallable([$this, 'beforeSave']));
 }

 protected function beforeSave(Model $entity)
 {
 foreach ($this->fields as $field) {
 if ($entity->getDirtyRef()[$field]) {
 $modelCloned = clone $entity->getModel();
 $modelCloned->addCondition($entity->idField != $this->id);
 $entityCloned = $modelCloned->tryLoadBy($field, $entity->get($field));

 if ($entityCloned !== null) {
 throw (new \Atk4\Data\Exception('Duplicate record exists'))
 ->addMoreInfo('field', $field)
 ->addMoreInfo('value', $entity->get($field));
 }
 }
 }
 }
}

As expected - when you add a new model the new values are checked against
existing records. You can also slightly modify the logic to make addCondition
additive if you are verifying for the combination of matched fields.

Using WITH cursors

Many SQL database engines support defining WITH cursors to use in select, update
and even delete statements.

	
addCteModel(string $name, Model $model, bool $recursive = false)

	Agile toolkit data models also support these cursors. Usage is like this:

$invoices = new Invoice();

$contacts = new Contact();
$contacts->addCteModel(‘inv’, $invoices);
$contacts->join(‘inv.cid’);

with
 `inv` as (select `contact_id`, `ref_no`, `total_net` from `invoice`)
select
 *
from `contact`
 join `inv` on `inv`.`contact_id`=`contact`.`id`

Note

Supported since MySQL 8.x, MariaDB supported it earlier.

Creating Many to Many relationship

Depending on the use-case many-to-many relationships can be implemented
differently in Agile Data. I will be focusing on the practical approach.
My system has “Invoice” and “Payment” document and I’d like to introduce
“invoice_payment” that can link both entities together with fields
(‘invoice_id’, ‘payment_id’, and ‘amount_closed’).
Here is what I need to do:

1. Create Intermediate Entity - InvoicePayment

Create new Model:

class Model_InvoicePayment extends \Atk4\Data\Model
{
 public $table = 'invoice_payment';

 protected function init(): void
 {
 parent::init();

 $this->hasOne('invoice_id', 'Model_Invoice');
 $this->hasOne('payment_id', 'Model_Payment');
 $this->addField('amount_closed');
 }
}

2. Update Invoice and Payment model

Next we need to define reference. Inside Model_Invoice add:

$this->hasMany('InvoicePayment');

$this->hasMany('Payment', ['model' => function (self $m) {
 $p = new Model_Payment($m->getPersistence());
 $j = $p->join('invoice_payment.payment_id');
 $j->addField('amount_closed');
 $j->hasOne('invoice_id', 'Model_Invoice');
}, 'theirField' => 'invoice_id']);

$this->onHookShort(Model::HOOK_BEFORE_DELETE, function () {
 foreach ($this->ref('InvoicePayment') as $payment) {
 $payment->delete();
 }
});

You’ll have to do a similar change inside Payment model. The code for ‘$j->’
have to be duplicated until we implement method Join->importModel().

3. How to use

Here are some use-cases. First lets add payment to existing invoice. Obviously
we cannot close amount that is bigger than invoice’s total:

$i->ref('Payment')->insert([
 'amount' => $paid,
 'amount_closed' => min($paid, $i->get('total')),
 'payment_code' => 'XYZ',
]);

Having some calculated fields for the invoice is handy. I’m adding total_payments
that shows how much amount is closed and amount_due:

// define field to see closed amount on invoice
$this->hasMany('InvoicePayment')
 ->addField('total_payments', ['aggregate' => 'sum', 'field' => 'amount_closed']);
$this->addExpression('amount_due', ['expr' => '[total] - coalesce([total_payments], 0)']);

Note that I’m using coalesce because without InvoicePayments the aggregate sum
will return NULL. Finally let’s build allocation method, that allocates new
payment towards a most suitable invoice:

// add to Model_Payment
public function autoAllocate()
{
 $client = $this->ref['client_id'];
 $invoices = $client->ref('Invoice');

 // we are only interested in unpaid invoices
 $invoices->addCondition('amount_due', '>', 0);

 // Prioritize older invoices
 $invoices->setOrder('date');

 while ($this->get('amount_due') > 0) {
 // see if any invoices match by 'reference'
 $invoice = $invoices->tryLoadBy('reference', $this->get('reference'));

 if ($invoice === null) {
 // otherwise load any unpaid invoice
 $invoice = $invoices->tryLoadAny();

 if ($invoice === null) {
 // couldn't load any invoice
 return;
 }
 }

 // How much we can allocate to this invoice
 $alloc = min($this->get('amount_due'), $invoice->get('amount_due'))
 $this->ref('InvoicePayment')->insert(['amount_closed' => $alloc, 'invoice_id' => $invoice->getId()]);

 // Reload ourselves to refresh amount_due
 $this->reload();
 }
}

The method here will prioritize oldest invoices unless it finds the one that
has a matching reference. Additionally it will allocate your payment towards
multiple invoices. Finally if invoice is partially paid it will only allocate
what is due.

Creating Related Entity Lookup

Sometimes when you add a record inside your model you want to specify some
related records not through ID but through other means. For instance, when
adding invoice, I want to make it possible to specify ‘Category’ through the
name, not only category_id. First, let me illustrate how can I do that with
category_id:

class Model_Invoice extends \Atk4\Data\Model
{
 protected function init(): void
 {
 parent::init();

 ...

 $this->hasOne('category_id', 'Model_Category');

 ...
 }
}

$m = new Model_Invoice($db);
$m->insert(['total' => 20, 'client_id' => 402, 'category_id' => 6]);

So in situations when client_id and category_id is not known (such as import or
API call) this approach will require us to perform 2 extra queries:

$m = new Model_Invoice($db);
$m->insert([
 'total' => 20,
 'client_id' => $m->ref('client_id')->loadBy('code', $clientCode)->getId(),
 'category_id' => $m->ref('category_id')->loadBy('name', $category)->getId(),
]);

The ideal way would be to create some “non-persistable” fields that can be used
to make things easier:

$m = new Model_Invoice($db);
$m->insert([
 'total' => 20,
 'client_code' => $clientCode,
 'category' => $category,
]);

Here is how to add them. First you need to create fields:

$this->addField('client_code', ['neverPersist' => true]);
$this->addField('client_name', ['neverPersist' => true]);
$this->addField('category', ['neverPersist' => true]);

I have declared those fields with neverPersist so they will never be used by
persistence layer to load or save anything. Next I need a beforeSave handler:

$this->onHookShort(Model::HOOK_BEFORE_SAVE, function () {
 if ($this->_isset('client_code') && !$this->_isset('client_id')) {
 $cl = $this->refModel('client_id');
 $cl->addCondition('code', $this->get('client_code'));
 $this->set('client_id', $cl->action('field', ['id']));
 }

 if ($this->_isset('client_name') && !$this->_isset('client_id')) {
 $cl = $this->refModel('client_id');
 $cl->addCondition('name', 'like', $this->get('client_name'));
 $this->set('client_id', $cl->action('field', ['id']));
 }

 if ($this->_isset('category') && !$this->_isset('category_id')) {
 $c = $this->refModel('category_id');
 $c->addCondition($c->titleField, 'like', $this->get('category'));
 $this->set('category_id', $c->action('field', ['id']));
 }
});

Note that isset() here will be true for modified fields only and behaves
differently from PHP’s default behavior. See documentation for Model::isset

This technique allows you to hide the complexity of the lookups and also embed
the necessary queries inside your “insert” query.

Fallback to default value

You might wonder, with the lookup like that, how the default values will work?
What if the user-specified entry is not found? Lets look at the code:

if ($m->_isset('category') && !$m->_isset('category_id')) {
 $c = $this->refModel('category_id');
 $c->addCondition($c->titleField, 'like', $m->get('category'));
 $m->set('category_id', $c->action('field', ['id']));
}

So if category with a name is not found, then sub-query will return “NULL”.
If you wish to use a different value instead, you can create an expression:

if ($m->_isset('category') && !$m->_isset('category_id')) {
 $c = $this->refModel('category_id');
 $c->addCondition($c->titleField, 'like', $m->get('category'));
 $m->set('category_id', $this->expr('coalesce([], [])', [
 $c->action('field', ['id']),
 $m->getField('category_id')->default,
]));
}

The beautiful thing about this approach is that default can also be defined
as a lookup query:

$this->hasOne('category_id', 'Model_Category');
$this->getField('category_id')->default =
 $this->refModel('category_id')->addCondition('name', 'Other')
 ->action('field', ['id']);

Inserting Hierarchical Data

In this example I’ll be building API that allows me to insert multi-model
information. Here is usage example:

$invoice->insert([
 'client' => 'Joe Smith',
 'payment' => [
 'amount' => 15,
 'ref' => 'half upfront',
],
 'lines' => [
 ['descr' => 'Book', 'qty' => 3, 'price' => 5]
 ['descr' => 'Pencil', 'qty' => 1, 'price' => 10]
 ['descr' => 'Eraser', 'qty' => 2, 'price' => 2.5],
],
]);

Not only ‘insert’ but ‘set’ and ‘save’ should be able to use those fields for
‘payment’ and ‘lines’, so we need to first define those as ‘neverPersist’.
If you curious about client lookup by-name, I have explained it in the previous
section. Add this into your Invoice Model:

$this->addField('payment', ['neverPersist' => true]);
$this->addField('lines', ['neverPersist' => true]);

Next both payment and lines need to be added after invoice is actually created,
so:

$this->onHookShort(Model::HOOK_AFTER_SAVE, function (bool $isUpdate) {
 if ($this->_isset('payment')) {
 $this->ref('Payment')->insert($this->get('payment'));
 }

 if ($this->_isset('lines')) {
 $this->ref('Line')->import($this->get('lines'));
 }
});

You should never call save() inside afterSave hook, but if you wish to do some
further manipulation, you can reload a clone:

$entityCloned = clone $entity;
$entityCloned->reload();
if ($entityCloned->get('amount_due') == 0) {
 $entityCloned->save(['status' => 'paid']);
}

Related Record Conditioning

Sometimes you wish to extend one Model into another but related field type
can also change. For example let’s say we have Model_Invoice that extends
Model_Document and we also have Model_Client that extends Model_Contact.

In theory Document’s ‘contact_id’ can be any Contact, however when you create
‘Model_Invoice’ you wish that ‘contact_id’ allow only Clients. First, lets
define Model_Document:

$this->hasOne('client_id', 'Model_Contact');

One option here is to move ‘Model_Contact’ into model property, which will be
different for the extended class:

$this->hasOne('client_id', ['model' => [$this->client_class]]);

Alternatively you can replace model in the init() method of Model_Invoice:

$this->getReference('client_id')->model = 'Model_Client';

You can also use array here if you wish to pass additional information into
related model:

$this->getReference('client_id')->model = ['Model_Client', 'no_audit' => true];

Combined with our “Audit” handler above, this should allow you to relate
with deleted clients.

The final use case is when some value inside the existing model should be
passed into the related model. Let’s say we have ‘Model_Invoice’ and we want to
add ‘payment_invoice_id’ that points to ‘Model_Payment’. However we want this
field only to offer payments made by the same client. Inside Model_Invoice add:

$this->hasOne('client_id', 'Client');

$this->hasOne('payment_invoice_id', ['model' => function (self $m) {
 return $m->ref('client_id')->ref('Payment');
}]);

/// how to use

$m = new Model_Invoice($db);
$m->set('client_id', 123);

$m->set('payment_invoice_id', $m->ref('payment_invoice_id')->loadOne()->getId());

In this case the payment_invoice_id will be set to ID of any payment by client
123. There also may be some better uses:

foreach ($cl->ref('Invoice') as $m) {
 $m->set('payment_invoice_id', $m->ref('payment_invoice_id')->loadOne()->getId());
 $m->save();
}

Narrowing Down Existing References

Agile Data allow you to define multiple references between same entities, but
sometimes that can be quite useful. Consider adding this inside your Model_Contact:

$this->hasMany('Invoice', 'Model_Invoice');
$this->hasMany('OverdueInvoice', ['model' => function (self $m) {
 return $m->ref('Invoice')->addCondition('due', '<', date('Y-m-d'))
}]);

This way if you extend your class into ‘Model_Client’ and modify the ‘Invoice’
reference to use different model:

$this->getReference('Invoice')->model = 'Model_Invoice_Sale';

The ‘OverdueInvoice’ reference will be also properly adjusted.

Loading and Saving CSV Files

	
class PersistenceCsv

	

Agile Data can operate with CSV files for data loading, or saving. The capabilities
of PersistenceCsv are limited to the following actions:

	open any CSV file, use column mapping

	identify which column is corresponding for respective field

	support custom mapper, e.g. if date is stored in a weird way

	support for CSV files that have extra lines on top/bottom/etc

	listing/iterating

	adding a new record

Setting Up

When creating new persistence you must provide a valid URL for
the file that might be stored either on a local system or
use a remote file scheme (ftp://…). The file will not be
actually opened unless you perform load/save operation:

$p = new Persistence\Csv('myfile.csv');

$u = new Model_User($p);
$u = $u->tryLoadAny(); // actually opens file and finds first record

Exporting and Importing data from CSV

You can take a model that is loaded from other persistence and save
it into CSV like this. The next example demonstrates a basic functionality
of SQL database export to CSV file:

$db = new Persistence\Sql($connection);
$csv = new Persistence\Csv('dump.csv');

$m = new Model_User($db);

foreach (new Model_User($db) as $m) {
 $m->withPersistence($csv)->save();
}

Theoretically you can do few things to tweak this process. You can specify
which fields you would like to see in the CSV:

foreach (new Model_User($db) as $m) {
 $m->withPersistence($csv)
 ->setOnlyFields(['id', 'name', 'password'])
 ->save();
}

Additionally if you want to use a different column titles, you can:

foreach (new Model_User($db) as $m) {
 $mCsv = $m->withPersistence($csv);
 $mCsv->setOnlyFields(['id', 'name', 'password'])
 $mCsv->getField('name')->actual = 'First Name';
 $mCsv->save();
}

Like with any other persistence you can use typecasting if you want data to be
stored in any particular format.

The examples above also create object on each iteration, that may appear as
a performance inefficiency. This can be solved by re-using Csv model through
iterations:

$m = new Model_User($db);
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';

foreach ($m as $mCsv) {
 $mCsv->save();
}

This code can be further simplified if you use import() method:

$m = new Model_User($db);
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';
$mCsv->import($m);

Naturally you can also move data in the other direction:

$m = new Model_User($db);
$mCsv = $m->withPersistence($csv);
$mCsv->setOnlyFields(['id', 'name', 'password'])
$mCsv->getField('name')->actual = 'First Name';

$m->import($mCsv);

Only the last line changes and the data will now flow in the other direction.

 PHP Namespace Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 Atk4	

 	
 	
 Atk4\Data	

 	
 	
 Atk4\Data\Field	

 	
 	
 Atk4\Data\Model	

 	
 	
 Atk4\Data\Model\Scope	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	() (method)

_

 	
 	__construct() (Exception method)

 	(PersistenceStatic_ method)

 	
 	__debugInfo() (Expression method)

 	_setArgs() (Query method)

A

 	
 	action() (Model method)

 	actual (Atk4\Data\Field property)

 	(FieldSql property)

 	addCalculatedField() (Model method)

 	addCondition() (Atk4\Data\Model method)

 	addExpression() (Model method)

 	addField() (Atk4\Data\Model\Join method)

 	(Model method)

 	(ReferenceHasOneSql method)

 	addFields() (Model method)

 	(ReferenceHasOneSql method)

 	
 	addReference() (Model method)

 	addTitle() (ReferenceHasOneSql method)

 	AggregateModel (class in Atk4\Data\Model)

 	andExpr() (Query method)

 	Atk4\Data (namespace), [1]

 	Atk4\Data\Field (namespace)

 	Atk4\Data\Model (namespace), [1]

 	Atk4\Data\Model\Scope (namespace)

 	atomic() (Connection method)

 	(PersistenceSql method)

B

 	
 	beginTransaction() (Connection method)

C

 	
 	caption (Model property)

 	caseExpr() (Query method)

 	caseWhen() (Query method)

 	commit() (Connection method)

 	Condition (class in Atk4\Data\Model\Scope)

 	
 	connect() (Connection method)

 	connectDbalConnection() (Connection method)

 	Connection (class), [1]

 	connection (Expression property)

 	containsMany() (Atk4\Data\Model\Join method)

 	containsOne() (Atk4\Data\Model\Join method)

D

 	
 	data (Model property)

 	debug (Expression property)

 	default (Atk4\Data\Field property)

 	defaultField (Query property)

 	
 	delete() (Model method)

 	dirty (Model property)

 	dsql() (Connection method)

 	(Query method)

 	duplicate() (Model method)

E

 	
 	enum (Atk4\Data\Field property)

 	escapeIdentifier() (Expression method)

 	escapeIdentifierSoft() (Expression method)

 	escapeParam() (Expression method)

 	Exception (class)

 	execute() (Connection method)

 	executeQuery() (Expression method)

 	export() (Model method)

 	
 	expr (SqlExpressionField property)

 	expr() (Atk4\Data\Model method)

 	(Connection method)

 	(Expression method)

 	(PersistenceSql method)

 	(Query method)

 	Expression (class)

 	exprNow() (Query method)

F

 	
 	Field (class in Atk4\Data), [1]

 	
 	field() (Query method)

 	FieldSql (class)

G

 	
 	get() (Atk4\Data\Field method)

 	(Model method)

 	getDebugQuery() (Expression method)

 	getDsqlExpression() (FieldSql method)

 	(SqlExpressionField method)

 	getField() (Model method)

 	getIterator() (Model method)

 	getModel() (ReferenceHasOne method)

 	getModelCaption() (Model method)

 	
 	getOne() (Expression method)

 	getParams() (Exception method)

 	getRawIterator() (Model method)

 	getRow() (Expression method)

 	getRows() (Expression method)

 	getTitle() (Model method)

 	getTitles() (Model method)

 	group() (Query method)

 	groupConcat() (Query method)

H

 	
 	hasField() (Model method)

 	hasMany() (Atk4\Data\Model\Join method)

 	
 	hasOne() (Atk4\Data\Model\Join method)

 	(Model method)

 	having() (Query method)

I

 	
 	idField (Model property)

 	import() (Model method)

 	init() (Model method)

 	insert() (Model method)

 	inTransaction() (Connection method)

 	
 	isDirty() (Model method)

 	isEditable() (Atk4\Data\Field method)

 	isHidden() (Atk4\Data\Field method)

 	isset() (Model method)

 	isVisible() (Atk4\Data\Field method)

J

 	
 	join (Atk4\Data\Field property)

 	Join (class in Atk4\Data\Model)

 	
 	join() (Atk4\Data\Model\Join method)

 	(Query method)

 	JoinSql (class in Atk4\Data\Model)

L

 	
 	limit() (Query method)

 	
 	link (ReferenceHasOne property)

 	load() (Model method)

M

 	
 	mode (Query property)

 	Model (class in Atk4\Data)

 	(class), [1], [2], [3], [4]

 	
 	model (ReferenceHasOne property)

N

 	
 	neverPersist (Atk4\Data\Field property)

 	neverSave (Atk4\Data\Field property)

 	
 	newInstance() (Model method)

 	normalizeFieldName() (Model method)

 	nullable (Atk4\Data\Field property)

O

 	
 	onlyFields (Model property)

 	option() (Query method), [1]

 	order() (Query method)

 	
 	orExpr() (Query method)

 	otherwise() (Query method)

 	ourField (ReferenceHasOne property)

P

 	
 	paramBase (Expression property)

 	persistence (Model property)

 	PersistenceCsv (class)

 	
 	persistenceData (Model property)

 	PersistenceSql (class)

 	PersistenceStatic_ (class)

Q

 	
 	Query (class)

R

 	
 	readOnly (Atk4\Data\Field property)

 	ref() (ReferenceHasOne method)

 	(ReferenceHasOneSql method)

 	ReferenceHasOne (class)

 	ReferenceHasOneSql (class)

 	refLink() (Model method)

 	(ReferenceHasOneSql method)

 	
 	refModel() (Model method)

 	registerConnectionClass() (Connection method)

 	render() (Expression method)

 	required (Atk4\Data\Field property)

 	reset() (Query method)

 	rollBack() (Connection method)

S

 	
 	save() (Model method)

 	Scope (class in Atk4\Data)

 	scope() (Atk4\Data\Model method)

 	set() (Atk4\Data\Field method)

 	(Model method)

 	(Query method)

 	setLimit() (Model method)

 	
 	setMulti() (Model method)

 	setNull() (Atk4\Data\Field method)

 	(Model method)

 	setOnlyFields() (Model method)

 	setOrder() (Model method)

 	SqlExpressionField (class)

 	system (Atk4\Data\Field property)

T

 	
 	table (Model property)

 	table() (Query method)

 	tableAlias (ReferenceHasOne property)

 	template (Expression property)

 	templateDelete (Query property)

 	templateInsert (Query property)

 	templateReplace (Query property)

 	
 	templateSelect (Query property)

 	templateTruncate (Query property)

 	templateUpdate (Query property)

 	their_filed (ReferenceHasOne property)

 	titleField (Model property)

 	tryLoad() (Model method)

 	type (Atk4\Data\Field property)

U

 	
 	ui (Atk4\Data\Field property)

 	
 	unload() (Model method)

 	unset() (Model method)

V

 	
 	values (Atk4\Data\Field property)

W

 	
 	where() (Query method)

 	
 	with() (Query method)

 	withPersistence() (Model method), [1]

Data Types

ATK Data framework implements a consistent and extensible type system with the
following goals:

Type specification

	Provide list of out-of-the-box types, such as “percentage”

	Provide list of classes such as Fraction

	Mechanism to find corresponding class configuration based on selected type

Specifying one of supported types will ensure that your field format is
recognized universally, can be stored, loaded, presented to user through UI
inside a Table or Form and can be exported through RestAPI:

$this->addField('is_vip', ['type' => 'boolean']);

We also allow use of custom Field implementation:

$this->addField('encrypted_password', new \Atk4\Data\Field\PasswordField());

A properly implemented type will still be able to offer some means to present
it in human-readable format, however in some cases, if you plan on using ATK UI,
you would have to create a custom decorators/FormField to properly read and
present your type value. See \Atk4\Ui\Field::ui.

Persistence mechanics and Serialization

All type values can be specified as primitives. For example DateTime object
class is associated with the type=time will be converted into string with
default format of “21:43:05”.

Types that cannot be converted into primitive, there exist a process of “serialization”,
which can use JSON or standard serialize() method to store object inside
incompatible database/persistence.

Serialization abilities allow us to get rid of many arbitrary types such as “array_json”
and simply use this:

$model->addField('selection', ['type' => 'json']);

Field configuration

Fields can be further configured. For numeric fields it’s possible to provide
precision. For instance, when user specifies ‘type’ => ‘atk4_money’ it is represented
as [‘Number’, ‘precision’ => 2, ‘prefix’ => ‘€’]

Not only this allows us make a flexible and re-usable functionality for fields,
but also allows for an easy way to override:

$model->addField('salary', ['type' => 'atk4_money', 'precision' => 4']);

Although some configuration of the field may appear irrelevant (prefix/postfix)
to operations with data from inside PHP, those properties can be used by
ATK UI or data export routines to properly input or display values.

Typecasting

ATK Data uses PHP native types and classes. For example, ‘time’ type is using
DateTime object.

When storing or displaying a type-casting takes place which will format the
value accordingly. Type-casting can be persistence-specific, for instance,
when storing “datetime” into SQL, the ISO format will be used, but when displayed
to the user a regional format is used instead.

Supported Types

ATK Data prior to 1.5 supports the following types:

	string

	boolean

	integer ([’Number’, ‘precision’ => 0])

	money ([’Number’, ‘prefix’ => ‘€’, ‘precision’ => 2])

	float ([’Number’, ‘type’ => ‘float’])

	date ([’DateTime’])

	datetime ([’DateTime’])

	time ([’DateTime’])

	password ([’Password])

	array

	object

In ATK Data the number of supported types has been extended with:

	percent (34.2%) ([’Number’, ‘format’ => fn ($v) => $v * 100, ‘postfix’ => ‘%’])

	rating (3 out of 5) ([’Number’, ‘max’ => 5, ‘precision’ => 0])

	uuid (xxxxxxxx-xxxx-…) ([’Number’, ‘base’ => 16, ‘mask’ => ‘########-##..’])

	hex (number with base 16) ([’Number’, ‘base’ => 16])

	ip (123.2.44.1) ([’Number’, ‘base’ => 256, ‘mask’ => ‘#.#.#.#’])

	ipv6 ([’Number’, ‘base’ => 16’, ‘mask’ => ‘####:####:..’]);

	model (used for containment)

	fraction (5/7) ([’Fraction’])

Additionally there is a support for

	distance ([’Units’, ‘scale’ => [‘m’ => 1, ‘km’ => 1000, ‘mm’ => 0.001])

	duration

	mass

	area

	volume

All measurements are implemented with Units and can be further extended:

$model->addField('speed', ['Units', 'postfix' => '/s', 'scale' => ['m' => 1, 'km' => 1000]]);
$model->set('speed', '30km/s');

echo $model->get('speed'); // 30000
echo $model->getField('speed')->format(); // 30 km/s
echo $model->getField('speed')->format('m'); // 30000 m/s

Advanced Topics

DSQL has huge capabilities in terms of extending. This chapter explains just
some of the ways how you can extend this already incredibly powerful library.

Advanced Connections

Connection is incredibly lightweight and powerful in DSQL.
The class tries to get out of your way as much as possible.

Using DSQL without Connection

You can use Query and Expression without connection
at all. Simply create expression:

$expr = new Mysql\Expression('show tables like []', ['foo%']);

or query:

$query = (new Mysql\Query())->table('user')->where('id', 1);

When it’s time to execute you can specify your Connection manually:

$rows = $expr->getRows($connection);
foreach ($rows as $row) {
 echo json_encode($row) . "\n";
}

With queries you might need to select mode first:

$stmt = $query->mode('delete')->executeStatement($connection);

The Expresssion::execute is a convenient way to prepare query,
bind all parameters and get DoctrineDBALResult, but if you wish to do it manually,
see Manual Query Execution.

Using in Existing Framework

If you use DSQL inside another framework, it’s possible that there is already
a PDO object which you can use. In Laravel you can optimize some of your queries
by switching to DSQL:

$c = new Connection(['connection' => $pdo]);

$userIds = $c->dsql()->table('expired_users')->field('user_id');
$c->dsql()->table('user')->where('id', 'in', $userIds)->set('active', 0)->mode('update')->executeStatement();

// Native Laravel Database Query Builder
// $userIds = DB::table('expired_users')->lists('user_id');
// DB::table('user')->whereIn('id', $userIds)->update(['active', 0]);

The native query builder in the example above populates $userIds with array from
expired_users table, then creates second query, which is an update. With
DSQL we have accomplished same thing with a single query and without fetching
results too.

UPDATE
 user
SET
 active = 0
WHERE
 id in (SELECT user_id from expired_users)

If you are creating Connection through constructor, you may have
to explicitly specify property Connection::queryClass:

$c = new Connection(['connection' => $pdo, 'queryClass' => Atk4\Data\Persistence\Sql\Sqlite\Query::class]);

This is also useful, if you have created your own Query class in a different
namespace and wish to use it.

Extending Query Class

You can add support for new database vendors by creating your own
Query class.
Let’s say you want to add support for new SQL vendor:

class Query_MyVendor extends Atk4\Data\Persistence\Sql\Query
{
 protected string $identifierEscapeChar = '"';
 protected string $expressionClass = Expression_MyVendor::class;

 // truncate is done differently by this vendor
 protected string $templateTruncate = 'delete [from] [table]';

 // also join is not supported
 public function join(
 $foreignTable,
 $masterField = null,
 $joinKind = null,
 $foreignAlias = null
) {
 throw new Atk4\Data\Persistence\Sql\Exception('Join is not supported by the database');
 }
}

Now that our custom query class is complete, we would like to use it by default
on the connection:

$c = \Atk4\Data\Persistence\Sql\Connection::connect($dsn, $user, $pass, ['queryClass' => 'Query_MyVendor']);

Adding new vendor support through extension

If you think that more people can benefit from your custom query class, you can
create a separate add-on with it’s own namespace. Let’s say you have created
myname/dsql-myvendor.

	Create your own Query class inside your library. If necessary create your
own Connection class too.

	Make use of composer and add dependency to DSQL.

	Add a nice README file explaining all the quirks or extensions. Provide
install instructions.

	Fork DSQL library.

	Modify Connection::connect to recognize your database identifier
and refer to your namespace.

	Modify docs/extensions.rst to list name of your database and link to your
repository / composer requirement.

	Copy phpunit-mysql.xml into phpunit-myvendor.xml and make sure that
dsql/tests/db/* works with your database.

	Finally:

	
	Submit pull request for only the Connection class and docs/extensions.rst.

If you would like that your vendor support be bundled with DSQL, you should
contact copyright@agiletoolkit.org after your external class has been around
and received some traction.

Adding New Query Modes

By Default DSQL comes with the following Query Modes:

	select

	delete

	insert

	replace

	update

	truncate

You can add new mode if you wish. Let’s look at how to add a MySQL specific
query “LOAD DATA INFILE”:

	Define new property inside your Query class $templateLoadData.

	Add public method allowing to specify necessary parameters.

	Re-use existing methods/template tags if you can.

	Create _render method if your tag rendering is complex.

So to implement our task, you might need a class like this:

use \Atk4\Data\Persistence\Sql\Exception;

class QueryMysqlCustom extends \Atk4\Data\Persistence\Sql\Mysql\Query
{
 protected string $templateLoadData = 'load data local infile [file] into table [table]';

 public function file($file)
 {
 if (!is_readable($file)) {
 throw Exception(['File is not readable', 'file' => $file]);
 }
 $this['file'] = $file;
 }

 public function loadData(): array
 {
 return $this->mode('loadData')->getRows();
 }
}

Then to use your new statement, you can do:

$c->dsql()->file('abc.csv')->loadData();

Manual Query Execution

If you are not satisfied with Expression::execute you can execute
query yourself.

	Expression::render query, then send the 1st element into PDO::prepare();

	use new $statement to bindValue with the contents of 2nd element;

	set result fetch mode and parameters;

	execute() your statement

Exception Class

DSQL slightly extends and improves Exception class

	
class Exception

	

The main goal of the new exception is to be able to accept additional
information in addition to the message. We realize that often $e->getMessage()
will be localized, but if you stick some variables in there, this will no longer
be possible. You also risk injection or expose some sensitive data to the user.

	
Exception::__construct($message, $code)

	Create new exception

	Parameters

	
	$message (string|array) – Describes the problem

	$code (int) – Error code

Usage:

throw new Atk4\Data\Persistence\Sql\Exception('Hello');

throw (new Atk4\Data\Persistence\Sql\Exception('File is not readable'))
 ->addMoreInfo('file', $file);

When displayed to the user the exception will hide parameter for $file, but you
still can get it if you really need it:

	
Exception::getParams()

	Return additional parameters, that might be helpful to find error.

	Returns

	array

Any DSQL-related code must always throw Atk4DataPersistenceSqlException. Query-related
errors will generate PDO exceptions. If you use a custom connection and doing
some vendor-specific operations, you may also throw other vendor-specific
exceptions.

Connection

DSQL supports various database vendors natively but also supports 3rd party
extensions.
For current status on database support see: Vendor support and Extensions.

	
class Connection

	

Connection class is handy to have if you plan on building and executing
queries in your application. It’s more appropriate to store
connection in a global variable or global class:

$app->db = Atk4\Data\Persistence\Sql\Connection::connect($dsn, $user, $pass, $defaults);

	
static Connection::connect($dsn, $user = null, $password = null, $defaults = [])

	Determine which Connection class should be used for specified $dsn,
establish connection to DB by creating new object of this connection class and return.

	Parameters

	
	$dsn (string) – DSN, see https://www.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html

	$user (string) – username

	$password (string) – password

	$defaults (array) – Other default properties for connection class.

	Returns

	new Connection

This should allow you to access this class from anywhere and generate either
new Query or Expression class:

$query = $app->db->dsql();

// or

$expr = $app->db->expr('show tables');

	
Connection::expr($template, $arguments)

	Creates new Expression class and sets Expression::connection.

	Parameters

	
	$arguments (array) – Other default properties for connection class.

	Returns

	new Expression

	
Connection::dsql($defaults)

	Creates new Query class and sets Query::connection.

	Parameters

	
	$defaults (array) – Other default properties for connection class.

	Returns

	new Query

Here is how you can use all of this together:

$dsn = 'mysql:host=localhost;port=3307;dbname=testdb';

$connection = Atk4\Data\Persistence\Sql\Connection::connect($dsn, 'root', 'root');

echo 'Time now is: ' . $connection->expr('select now()');

connect will determine appropriate class that can be used for this
DSN string. This can be a PDO class or it may try to use a 3rd party connection
class.

Connection class is also responsible for executing queries. This is only used
if you connect to vendor that does not use PDO.

	
Connection::execute(Expression $expr) → DoctrineDBALResult

	Creates new Expression class and sets Expression::connection.

	Parameters

	
	$expr (Expression) – Expression (or query) to execute

	Returns

	DoctrineDBALResult

	
Connection::registerConnectionClass($connectionClass, $connectionType)

	Adds connection class to the registry for resolving in Connection::resolveConnectionClass method.

:param string $connectionType Alias of the connection
:param string $connectionClass The connection class to be used for the diver type

Developers can register custom classes to handle driver types using the Connecion::registerConnectionClass method:

Connection::registerConnectionClass(Custom\MySQL\Connection::class, 'pdo_mysql');

	
Connection::connectDbalConnection(array $dsn)

	The method should establish connection with DB and return the underlying connection object used by
the Connection class. By default PDO is used but the method can be overriden to return custom object to be
used for connection to DB.

	
class Expression

	

Expressions

Expression class implements a flexible way for you to define any custom
expression then execute it as-is or as a part of another query or expression.
Expression is supported anywhere in DSQL to allow you to express SQL syntax
properly.

Quick Example:

$query->where('time', $query->expr(
 'between "[]" and "[]"',
 [$fromTime, $toTime]
));

// Produces: .. where `time` between :a and :b

Another use of expression is to supply field instead of value and vice versa:

$query->where($query->expr(
 '[] between time_from and time_to',
 [$time]
));

// Produces: where :a between time_from and time_to

Yet another curious use for the DSQL library is if you have certain object in
your ORM implementing Expressionable interface. Then you can also
use it within expressions:

$query->where($query->expr(
 '[] between [] and []',
 [$time, $model->getElement('time_form'), $model->getElement('time_to')]
));

// Produces: where :a between `time_from` and `time_to`

Another uses for expressions could be:

	Sub-Queries

	SQL functions, e.g. IF, CASE

	nested AND / OR clauses

	vendor-specific queries - “describe table”

	non-traditional constructions, UNIONS or SELECT INTO

Properties, Arguments, Parameters

Be careful when using those similar terms as they refer to different things:

	Properties refer to object properties, e.g. $expr->template,
see Other Properties

	Arguments refer to template arguments, e.g. select * from [table],
see Expression Template

	Parameters refer to the way of passing user values within a query
where id=:a and are further explained below.

Parameters

Because some values are un-safe to use in the query and can contain dangerous
values they are kept outside of the SQL query string and are using
PDO’s bindValue [https://www.php.net/manual/en/pdostatement.bindvalue.php]
instead. DSQL can consist of multiple objects and each object may have
some parameters. During rendering those parameters are joined together to
produce one complete query.

Creating Expression

$expr = $connection->expr('NOW()');

You can also use expr() method to create expression, in which case
you do not have to define “use” block:

$query->where('time', '>', $query->expr('NOW()'));

// Produces: .. where `time` > NOW()

You can specify some of the expression properties through first argument of the
constructor:

$expr = $connection->expr(['template' => 'NOW()']);

Scroll down for full list of properties.

Expression Template

When you create a template the first argument is the template. It will be stored
in $template property. Template string can contain arguments in a
square brackets:

	coalesce([], []) is same as coalesce([0], [1])

	coalesce([one], [two])

Arguments can be specified immediately through an array as a second argument
into constructor or you can specify arguments later:

$expr = $connection->expr(
 'coalesce([name], [surname])',
 ['name' => $name, 'surname' => $surname]
);

// is the same as

$expr = $connection->expr('coalesce([name], [surname])');
$expr['name'] = $name;
$expr['surname'] = $surname;

Nested expressions

Expressions can be nested several times:

$age = $connection->expr('coalesce([age], [default_age])');
$age['age'] = $connection->expr("year(now()) - year(birth_date)");
$age['default_age'] = 18;

$query->table('user')->field($age, 'calculated_age');

// select coalesce(year(now()) - year(birth_date), :a) `calculated_age` from `user`

When you include one query into another query, it will automatically take care
of all user-defined parameters (such as value 18 above) which will make sure
that SQL injections could not be introduced at any stage.

Rendering

An expression can be rendered into a valid SQL code by calling render() method.
The method will return an array with string and params.

	
Expression::render()

	Converts Expression object to an array with string and params.
Parameters are replaced with :a, :b, etc.

Executing Expressions

If your expression is a valid SQL query, (such as `show databases`) you
might want to execute it. Expression class offers you various ways to execute
your expression. Before you do, however, you need to have $connection
property set. (See Connecting to Database on more details). In short the
following code will connect your expression with the database:

$expr = $connection->expr();

If you are looking to use connection Query class, you may want to
consider using a proper vendor-specific subclass:

$query = new \Atk4\Data\Persistence\Sql\Mysql\Query('connection' => $connection);

Finally, you can pass connection class into executeQuery directly.

	
Expression::executeQuery($connection = null)

	Executes expression using current database connection or the one you
specify as the argument:

$stmt = $expr->executeQuery($connection);

returns DoctrineDBALResult.

	
Expression::expr($template, $arguments)

	Creates a new Expression object that will inherit current
$connection property. Also if you are creating a
vendor-specific expression/query support, this method must return
instance of your own version of Expression class.

The main principle here is that the new object must be capable of working
with database connection.

	
Expression::getRows()

	Executes expression and return whole result-set in form of array of hashes:

$data = $connection->expr('show databases')->getRows();
echo json_encode($data);

The output would be

[
 { "Database": "mydb1" },
 { "Database": "mysql" },
 { "Database": "test" },
]

	
Expression::getRow()

	Executes expression and returns first row of data from result-set as a hash:

$data = $connection->expr('SELECT @@global.time_zone, @@session.time_zone')->getRow()

echo json_encode($data);

The output would be

{ "@@global.time_zone": "SYSTEM", "@@session.time_zone": "SYSTEM" }

	
Expression::getOne()

	Executes expression and return first value of first row of data from
result-set:

$time = $connection->expr('NOW()')->getOne();

Magic an Debug Methods

	
Expression::__debugInfo()

	This method is used to prepare a sensible information about your query
when you are executing var_dump($expr). The output will be HTML-safe.

	
Expression::getDebugQuery()

	Outputs query as a string by placing parameters into their respective
places. The parameters will be escaped, but you should still avoid using
generated query as it can potentially make you vulnerable to SQL injection.

This method will use HTML formatting if argument is passed.

In order for HTML parsing to work and to make your debug queries better
formatted, install sql-formatter:

composer require jdorn/sql-formatter

Escaping Methods

The following methods are useful if you’re building your own code for rendering
parts of the query. You must not call them in normal circumstances.

	
Expression::escapeIdentifier($sqlCode)

	Always surrounds $sql code with back-ticks.

This escaping method is automatically used for {…} expression template tags .

	
Expression::escapeIdentifierSoft($sqlCode)

	Surrounds $sql code with back-ticks.

This escaping method is automatically used for {{…}} expression template tags .

It will smartly escape table.field type of strings resulting in table.`field`.

Will do nothing if it finds “*”, “`” or “(” character in $sqlCode:

$query->escapeIdentifierSoft('first_name'); // `first_name`
$query->escapeIdentifierSoft('first.name'); // `first`.`name`
$query->escapeIdentifierSoft('(2 + 2)'); // (2 + 2)
$query->escapeIdentifierSoft('*'); // *

	
Expression::escapeParam($value)

	Converts value into parameter and returns reference. Used only during query
rendering. Consider using consume() instead, which will also
handle nested expressions properly.

This escaping method is automatically used for […] expression template tags .

Other Properties

	
property Expression::$template

	Template which is used when rendering.
You can set this with either $connection->expr(‘show tables’)
or $connection->expr([‘show tables’])
or $connection->expr([‘template’ => ‘show tables’]).

	
property Expression::$connection

	DB connection object.

	
property Expression::$paramBase

	Normally parameters are named :a, :b, :c. You can specify a different
param base such as :param_00 and it will be automatically increased
into :param_01 etc.

	
property Expression::$debug

	If true, then next call of execute will echo results
of getDebugQuery.

Vendor support and Extensions

	Vendor

	Support

	PDO

	Dependency

	MySQL

	Full

	mysql:

	native, PDO

	SQLite

	Full

	sqlite:

	native, PDO

	Oracle

	Untested

	oci:

	native, PDO

	PostgreSQL

	Untested

	pgsql:

	native, PDO

	MSSQL

	Untested

	mssql:

	native, PDO

Note

Most PDO vendors should work out of the box

3rd party vendor support

	Class

	Support

	PDO

	Dependency

	Connection_MyVendor

	Full

	myvendor:

	http://github/test/myvendor

See Adding new vendor support through extension for more details on how to add support for your driver.

Welcome to DSQL’s documentation!

Contents:

	Overview
	Goals of DSQL

	DSQL by example

	DSQL is Part of Agile Toolkit

	Requirements

	Installation

	Getting Started

	Contributing
	Guidelines

	Review and Approval

	Running the tests

	Reporting a security vulnerability

	Quickstart
	Basic Concepts

	Getting Started

	Creating Objects and PDO

	Query Building

	Query Mode

	Fetching Result

	Connection

	Expressions
	Properties, Arguments, Parameters
	Parameters

	Creating Expression

	Expression Template

	Nested expressions

	Rendering

	Executing Expressions

	Magic an Debug Methods

	Escaping Methods

	Other Properties

	Queries
	Method invocation principles

	Query Modes

	Chaining

	Using query as expression

	Modifying Select Query
	Setting Table

	Setting Fields

	Setting where and having clauses

	Grouping results by field

	Concatenate group of values

	Joining with other tables

	Use WITH cursors

	Limiting result-set

	Ordering result-set

	Insert and Replace query
	Set value to a field

	Set Insert Options

	Update Query
	Set Conditions

	Set value to a field

	Other settings

	Delete Query
	Set Conditions

	Other settings

	Dropping attributes

	Other Methods

	Properties

	Results

	Transactions

	Advanced Topics
	Advanced Connections
	Using DSQL without Connection

	Using in Existing Framework

	Extending Query Class
	Adding new vendor support through extension

	Adding New Query Modes

	Manual Query Execution

	Exception Class

	Vendor support and Extensions
	3rd party vendor support

Indices and tables

	Index

	Module Index

	Search Page

Overview

DSQL is a dynamic SQL query builder. You can write multi-vendor queries in PHP
profiting from better security, clean syntax and most importantly – sub-query
support. With DSQL you stay in control of when queries are executed and what
data is transmitted. DSQL is easily composable – build one query and use it as
a part of other query.

Goals of DSQL

	simple and concise syntax

	consistently scalable (e.g. 5 levels of sub-queries, 10 with joins and 15
parameters? no problem)

	“One Query” paradigm

	support for PDO vendors as well as NoSQL databases (with query language
similar to SQL)

	small code footprint (over 50% less than competing frameworks)

	free, licensed under MIT

	no dependencies

	
	follows design paradigms:

	
	“PHP the Agile way [https://github.com/atk4/dsql/wiki/PHP-the-Agile-way]”

	“Functional ORM [https://github.com/atk4/dsql/wiki/Functional-ORM]”

	“Open to extend [https://github.com/atk4/dsql/wiki/Open-to-Extend]”

	“Vendor Transparency [https://github.com/atk4/dsql/wiki/Vendor-Transparency]”

DSQL by example

The simplest way to explain DSQL is by example:

$query = $connection->dsql();
$query->table('employees')
 ->where('birth_date', '1961-05-02')
 ->field('count(*)');
echo 'Employees born on May 2, 1961: ' . $query->getOne();

The above code will execute the following query:

select count(*) from `salary` where `birth_date` = :a
 :a = "1961-05-02"

DSQL can also execute queries with multiple sub-queries, joins, expressions
grouping, ordering, unions as well as queries on result-set.

	See Quickstart if you would like to start learning DSQL.

	See https://github.com/atk4/dsql-primer for various working
examples of using DSQL with a real data-set.

DSQL is Part of Agile Toolkit

DSQL is a stand-alone and lightweight library with no dependencies and can be
used in any PHP project, big or small.

[image: Agile Toolkit Stack]

DSQL is also a part of Agile Toolkit [http://agiletoolkit.org/] framework and works best with
Agile Models [https://github.com/atk4/models]. Your project may benefit from a higher-level data abstraction
layer, so be sure to look at the rest of the suite.

Requirements

	PHP 5.5 and above

Installation

The recommended way to install DSQL is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project has and it
automatically installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php
php composer.phar require atk4/dsql

You can specify DSQL as a project or module dependency in composer.json:

{
 "require": {
 "atk4/dsql": "*"
 }
}

After installing, you need to require Composer’s autoloader in your PHP file:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure auto-loading, and
other best-practices for defining dependencies at
getcomposer.org [http://getcomposer.org].

Getting Started

Continue reading Quickstart where you will learn about basics of DSQL
and how to use it to it’s full potential.

Contributing

Guidelines

	DSQL utilizes PSR-1, PSR-2, PSR-4, and PSR-7.

	DSQL is meant to be lean and fast with very few dependencies. This means
that not every feature request will be accepted.

	All pull requests must include unit tests to ensure the change works as
expected and to prevent regressions.

	All pull requests must include relevant documentation or amend the existing
documentation if necessary.

Review and Approval

	All code must be submitted through pull requests on GitHub

	Any of the project managers may Merge your pull request, but it must not be
the same person who initiated the pull request.

Running the tests

In order to contribute, you’ll need to checkout the source from GitHub and
install DSQL dependencies using Composer:

git clone https://github.com/atk4/dsql.git
cd dsql && curl -s http://getcomposer.org/installer | php && ./composer.phar install --dev

DSQL is unit tested with PHPUnit. Run the tests using the Makefile:

make tests

There are also vendor-specific test-scripts which will require you to
set database. To run them:

All unit tests including SQLite database engine tests
phpunit --config phpunit.xml

MySQL database engine tests
phpunit --config phpunit-mysql.xml

Look inside these the .xml files for further information and connection details.

Reporting a security vulnerability

We want to ensure that DSQL is a secure library for everyone. If you’ve
discovered a security vulnerability in DSQL, we appreciate your help in
disclosing it to us in a responsible manner [http://en.wikipedia.org/wiki/Responsible_disclosure].

Publicly disclosing a vulnerability can put the entire community at risk. If
you’ve discovered a security concern, please email us at
security@agiletoolkit.org. We’ll work with you to make sure that we understand
the scope of the issue, and that we fully address your concern. We consider
correspondence sent to security@agiletoolkit.org our highest priority, and work
to address any issues that arise as quickly as possible.

After a security vulnerability has been corrected, a security hot-fix release
will be deployed as soon as possible.

	
class Query

	

Queries

Query class represents your SQL query in-the-making. Once you create object of
the Query class, call some of the methods listed below to modify your query. To
actually execute your query and start retrieving data, see fetching-result
section.

You should use Connection if possible to create your query objects. All
examples below are using $c->dsql() method which generates Query linked to
your established database connection.

Once you have a query object you can execute modifier methods such as
field() or table() which will change the way how your
query will act.

Once the query is defined, you can either use it inside another query or
expression or you can execute it in exchange for result set.

Quick Example:

$query = $c->dsql();

$query->field('name');
$query->where('id', 123);

$name = $query->getOne();

Method invocation principles

Methods of Query are designed to be flexible and concise. Most methods have a
variable number of arguments and some arguments can be skipped:

$query->where('id', 123);
$query->where('id', '=', 123); // the same

Most methods will accept Expression or strings. Strings are
escaped or quoted (depending on type of argument). By using Expression
you can bypass the escaping.

There are 2 types of escaping:

	Expression::escapeIdentifier(). Used for field and table names. Surrounds name with `.

	Expression::escapeParam(). Will convert value into parameter and replace with :a

In the next example $a is escaped but $b is parameterized:

$query->where('a', 'b');

// where `a` = "b"

If you want to switch places and execute where “b” = `a`, then you can resort
to Expressions:

$query->where($c->expr('{} = []', ['b', 'a']));

Parameters which you specify into Expression will be preserved and linked into
the $query properly.

Query Modes

When you create new Query it always start in “select” mode. You can switch
query to a different mode using mode. f you don’t switch the mode,
your Query remains in select mode and you can fetch results from it anytime.

The pattern of defining arguments for your Query and then executing allow you
to re-use your query efficiently:

$data = ['name' => 'John', 'surname' => 'Smith']

$query = $c->dsql();
$query
 ->where('id', 123)
 ->field('id')
 ->table('user')
 ->set($data);

$row = $query->getRow();

if ($row) {
 $query
 ->set('revision', $query->expr('revision + 1'))
 ->mode('update')->executeStatement();
} else {
 $query
 ->set('revision', 1)
 ->mode('insert')->executeStatement();
}

The example above will perform a select query first:

	select id from user where id = 123

If a single row can be retrieved, then the update will be performed:

	update user set name = “John”, surname = “Smith”, revision = revision + 1 where id = 123

Otherwise an insert operation will be performed:

	insert into user (name, surname, revision) values (“John”, “Smith”, 1)

Chaining

Majority of methods return $this when called, which makes it pretty
convenient for you to chain calls by using ->fx() multiple times as
illustrated in last example.

You can also combine creation of the object with method chaining:

$age = $c->dsql()->table('user')->where('id', 123)->field('age')->getOne();

Using query as expression

You can use query as expression where applicable. The query will get a special
treatment where it will be surrounded in brackets. Here are few examples:

$q = $c->dsql()
 ->table('employee');

$q2 = $c->dsql()
 ->field('name')
 ->table($q);

$q->getRows();

This query will perform select name from (select * from employee):

$q1 = $c->dsql()
 ->table('sales')
 ->field('date')
 ->field('amount', null, 'debit');

$q2 = $c->dsql()
 ->table('purchases')
 ->field('date')
 ->field('amount', null, 'credit');

$u = $c->dsql('[] union []', [$q1, $q2]);

$q = $c->dsql()
 ->field('date, debit, credit')
 ->table($u, 'derrivedTable');

$q->getRows();

This query will perform union between 2 table selects resulting in the following
query:

select `date`, `debit`, `credit` from (
 (select `date`, `amount` `debit` from `sales`) union
 (select `date`, `amount` `credit` from `purchases`)
) `derrivedTable`

Modifying Select Query

Setting Table

	
Query::table($table, $alias)

	Specify a table to be used in a query.

	Parameters

	
	$table (mixed) – table such as “employees”

	$alias (mixed) – alias of table

	Returns

	$this

This method can be invoked using different combinations of arguments.
Follow the principle of specifying the table first, and then optionally provide
an alias. You can specify multiple tables at the same time by using comma or
array (although you won’t be able to use the alias there).
Using keys in your array will also specify the aliases.

Basic Examples:

$c->dsql()->table('user');
 // SELECT * from `user`

$c->dsql()->table('user', 'u');
 // aliases table with "u"
 // SELECT * from `user` `u`

$c->dsql()->table('user')->table('salary');
 // specify multiple tables. Don't forget to link them by using "where"
 // SELECT * from `user`, `salary`

$c->dsql()->table(['user', 'salary']);
 // identical to previous example
 // SELECT * from `user`, `salary`

$c->dsql()->table(['u' => 'user', 's' => 'salary']);
 // specify aliases for multiple tables
 // SELECT * from `user` `u`, `salary` `s`

Inside your query table names and aliases will always be surrounded by backticks.
If you want to use a more complex expression, use Expression as
table:

$c->dsql()->table(
 $c->expr('(SELECT id FROM user UNION select id from document)'),
 'tbl'
);
// SELECT * FROM (SELECT id FROM user UNION SELECT id FROM document) `tbl`

Finally, you can also specify a different query instead of table, by simply
passing another Query object:

$subQuery = $c->dsql();
$subQuery->table('employee');
$subQuery->where('name', 'John');

$q = $c->dsql();
$q->field('surname');
$q->table($subQuery, 'sub');

// SELECT `surname` FROM (SELECT * FROM `employee` WHERE `name` = :a) `sub`

Method can be executed several times on the same Query object.

Setting Fields

	
Query::field($fields, $alias = null)

	Adds additional field that you would like to query. If never called, will
default to defaultField, which normally is *.

This method has several call options. $field can be array of fields and
also can be an Expression or Query

	Parameters

	
	$fields (string|array|object) – Specify list of fields to fetch

	$alias (string) – Optionally specify alias of field in resulting query

	Returns

	$this

Basic Examples:

$query = new Query();
$query->table('user');

$query->field('first_name');
 // SELECT `first_name` from `user`

$query->field('first_name, last_name');
 // SELECT `first_name`, `last_name` from `user`

$query->field('employee.first_name')
 // SELECT `employee`.`first_name` from `user`

$query->field('first_name', 'name')
 // SELECT `first_name` `name` from `user`

$query->field(['name' => 'first_name'])
 // SELECT `first_name` `name` from `user`

$query->field(['name' => 'employee.first_name']);
 // SELECT `employee`.`first_name` `name` from `user`

If the first parameter of field() method contains non-alphanumeric values
such as spaces or brackets, then field() will assume that you’re passing an
expression:

$query->field('now()');

$query->field('now()', 'time_now');

You may also pass array as first argument. In such case array keys will be
used as aliases (if they are specified):

$query->field(['time_now' => 'now()', 'time_created']);
 // SELECT now() `time_now`, `time_created` ...

$query->field($query->dsql()->table('user')->field('max(age)'), 'max_age');
 // SELECT (SELECT max(age) from user) `max_age` ...

Method can be executed several times on the same Query object.

Setting where and having clauses

	
Query::where($field, $operation, $value)

	Adds WHERE condition to your query.

	Parameters

	
	$field (mixed) – field such as “name”

	$operation (mixed) – comparison operation such as “>” (optional)

	$value (mixed) – value or expression

	Returns

	$this

	
Query::having($field, $operation, $value)

	Adds HAVING condition to your query.

	Parameters

	
	$field (mixed) – field such as “name”

	$operation (mixed) – comparison operation such as “>” (optional)

	$value (mixed) – value or expression

	Returns

	$this

Both methods use identical call interface. They support one, two or three
argument calls.

Pass string (field name), Expression or even Query as
first argument.

Operator can be specified through a second parameter - $operation. If unspecified,
will default to ‘=’.

Last argument is value. You can specify number, string, array, expression or
even null (specifying null is not the same as omitting this argument).
This argument will always be parameterized unless you pass expression.
If you specify array, all elements will be parametrized individually.

Starting with the basic examples:

$q->where('id', 1);
$q->where('id', '=', 1); // same as above

$q->where('id', '>', 1);

$q->where('id', '=', null); // will render to "IS NULL" SQL
$q->where('id', null) // same as above

$q->where('now()', 1); // will not use backticks
$q->where($c->expr('now()'), 1); // same as above

$q->where('id', [1, 2]); // renders as id in (1, 2)

You may call where() multiple times, and conditions are always additive (uses AND).
The easiest way to supply OR condition is to specify multiple conditions
through array:

$q->where([['name', 'like', '%john%'], ['surname', 'like', '%john%']]);
 // .. WHERE `name` like '%john%' OR `surname` like '%john%'

You can also mix and match with expressions and strings:

$q->where([['name', 'like', '%john%'], 'surname is null']);
 // .. WHERE `name` like '%john%' AND `surname` is null

$q->where([['name', 'like', '%john%'], $q->expr('surname is null')]);
 // .. WHERE `name` like '%john%' AND surname is null

There is a more flexible way to use OR arguments:

	
Query::orExpr()

	Returns new Query object with method “where()”. When rendered all clauses
are joined with “OR”.

	
Query::andExpr()

	Returns new Query object with method “where()”. When rendered all clauses
are joined with “OR”.

Here is a sophisticated example:

$q = $c->dsql();

$q->table('employee')->field('name');
$q->where('deleted', 0);
$q->where(
 $q
 ->orExpr()
 ->where('a', 1)
 ->where('b', 1)
 ->where(
 $q->andExpr()
 ->where('a', 2)
 ->where('b', 2)
)
);

The above code will result in the following query:

select
 `name`
from
 `employee`
where
 deleted = 0 and
 (`a` = :a or `b` = :b or (`a` = :c and `b` = :d))

Technically orExpr() generates a yet another object that is composed
and renders its calls to where() method:

$q->having(
 $q
 ->orExpr()
 ->where('a', 1)
 ->where('b', 1)
);

having
 (`a` = :a or `b` = :b)

Grouping results by field

	
Query::group($field)

	Group by functionality. Simply pass either field name as string or
Expression object.

	Parameters

	
	$field (mixed) – field such as “name”

	Returns

	$this

The “group by” clause in SQL query accepts one or several fields. It can also
accept expressions. You can call group() with one or several comma-separated
fields as a parameter or you can specify them in array. Additionally you can
mix that with Expression or Expressionable objects.

Few examples:

$q->group('gender');

$q->group('gender, age');

$q->group(['gender', 'age']);

$q->group('gender')->group('age');

$q->group($q->expr('year(date)'));

Method can be executed several times on the same Query object.

Concatenate group of values

	
Query::groupConcat($field, $separator = ', ')

	Quite often when you use group by in your queries you also would like to
concatenate group of values.

:param mixed $field Field name or object
:param string $separator Optional separator to use. It’s comma by default

Different SQL engines have different syntax for doing this.
In MySQL it’s group_concat(), in Oracle it’s listagg, but in PgSQL it’s string_agg.
That’s why we have this method which will take care of this.

	$q->groupConcat(‘phone’, ‘;’);

	// group_concat(‘phone’, ‘;’)

If you need to add more parameters for this method, then you can extend this class
and overwrite this simple method to support expressions like this, for example:

group_concat(‘phone’ order by ‘date’ desc seprator ‘;’)

Joining with other tables

	
Query::join($foreignTable, $masterField, $joinKind)

	Join results with additional table using “JOIN” statement in your query.

	Parameters

	
	$foreignTable (string|array) – table to join (may include field and alias)

	$masterField (mixed) – main field (and table) to join on or Expression

	$joinKind (string) – ‘left’ (default), ‘inner’, ‘right’ etc - which join type to use

	Returns

	$this

When joining with a different table, the results will be stacked by the SQL
server so that fields from both tables are available. The first argument can
specify the table to join, but may contain more information:

$q->join('address'); // address.id = address_id
 // JOIN `address` ON `address`.`id`=`address_id`

$q->join('address a'); // specifies alias for the table
 // JOIN `address` `a` ON `address`.`id`=`address_id`

$q->join('address.user_id'); // address.user_id = id
 // JOIN `address` ON `address`.`user_id`=`id`

You can also pass array as a first argument, to join multiple tables:

$q->table('user u');
$q->join(['a' => 'address', 'c' => 'credit_card', 'preferences']);

The above code will join 3 tables using the following query syntax:

join
 address as a on a.id = u.address_id
 credit_card as c on c.id = u.credit_card_id
 preferences on preferences.id = u.preferences_id

However normally you would have user_id field defined in your supplementary
tables so you need a different syntax:

$q->table('user u');
$q->join([
 'a' => 'address.user_id',
 'c' => 'credit_card.user_id',
 'preferences.user_id',
]);

The second argument to join specifies which existing table/field is
used in on condition:

$q->table('user u');
$q->join('user boss', 'u.boss_user_id');
 // JOIN `user` `boss` ON `boss`.`id`=`u`.`boss_user_id`

By default the “on” field is defined as $table . “_id”, as you have seen in the
previous examples where join was done on “address_id”, and “credit_card_id”.
If you have specified field explicitly in the foreign field, then the “on” field
is set to “id”, like in the example above.

You can specify both fields like this:

$q->table('employees');
$q->join('salaries.emp_no', 'emp_no');

If you only specify field like this, then it will be automatically prefixed with
the name or alias of your main table. If you have specified multiple tables,
this won’t work and you’ll have to define name of the table explicitly:

$q->table('user u');
$q->join('user boss', 'u.boss_user_id');
$q->join('user super_boss', 'boss.boss_user_id');

The third argument specifies type of join and defaults to “left” join. You can
specify “inner”, “straight” or any other join type that your database support.

Method can be executed several times on the same Query object.

Joining on expression

For a more complex join conditions, you can pass second argument as expression:

$q->table('user', 'u');
$q->join('address a', $q->expr('a.name like u.pattern'));

Use WITH cursors

	
Query::with(Query $cursor, string $alias, ?array $fields = null, bool $recursive = false)

	If you want to add WITH cursor statement in your SQL, then use this method.
First parameter defines sub-query to use. Second parameter defines alias of this cursor.
By using third, optional argument you can set aliases for columns in cursor.
And finally forth, optional argument set if cursors will be recursive or not.

You can add more than one cursor in your query.

Did you know: you can use these cursors when joining your query to other tables. Just join cursor instead.

Keep in mind that if any of cursors added in your query will be recursive, then all cursors will
be set recursive. That’s how SQL want it to be.

Example:

$quotes = $q->table('quotes')

->field(‘emp_id’)
->field($q->expr(‘sum([])’, [‘total_net’]))
->group(‘emp_id’);

	$invoices = $q()->table(‘invoices’)

	->field(‘emp_id’)
->field($q->expr(‘sum([])’, [‘total_net’]))
->group(‘emp_id’);

	$employees = $q

	->with($quotes, ‘q’, [‘emp’, ‘quoted’])
->with($invoices, ‘i’, [‘emp’, ‘invoiced’])
->table(‘employees’)
->join(‘q.emp’)
->join(‘i.emp’)
->field([‘name’, ‘salary’, ‘q.quoted’, ‘i.invoiced’]);

This generates SQL below:

with
 `q` (`emp`, `quoted`) as (select `emp_id`, sum(`total_net`) from `quotes` group by `emp_id`),
 `i` (`emp`, `invoiced`) as (select `emp_id`, sum(`total_net`) from `invoices` group by `emp_id`)
select `name`, `salary`, `q`.`quoted`, `i`.`invoiced`
from `employees`
 left join `q` on `q`.`emp` = `employees`.`id`
 left join `i` on `i`.`emp` = `employees`.`id`

Limiting result-set

	
Query::limit($cnt, $shift)

	Limit how many rows will be returned.

	Parameters

	
	$cnt (int) – number of rows to return

	$shift (int) – offset, how many rows to skip

	Returns

	$this

Use this to limit your Query result-set:

$q->limit(5, 10);
 // .. LIMIT 10, 5

$q->limit(5);
 // .. LIMIT 0, 5

Ordering result-set

	
Query::order($order, $desc)

	Orders query result-set in ascending or descending order by single or
multiple fields.

	Parameters

	
	$order (string) – one or more field names, expression etc.

	$desc (int) – pass true to sort descending

	Returns

	$this

Use this to order your Query result-set:

$q->order('name'); // .. order by name
$q->order('name desc'); // .. order by name desc
$q->order(['name desc', 'id asc']) // .. order by name desc, id asc
$q->order('name', true); // .. order by name desc

Method can be executed several times on the same Query object.

Insert and Replace query

Set value to a field

	
Query::set($field, $value)

	Assigns value to the field during insert.

	Parameters

	
	$field (string) – name of the field

	$value (mixed) – value or expression

	Returns

	$this

Example:

$q->table('user')->set('name', 'john')->mode('insert')->executeStatement();
 // insert into user (name) values (john)

$q->table('log')->set('date', $q->expr('now()'))->mode('insert')->executeStatement();
 // insert into log (date) values (now())

Method can be executed several times on the same Query object.

Set Insert Options

	
Query::option($option, $mode = 'select')

	

It is possible to add arbitrary options for the query. For example this will fetch unique user birthdays:

$q->table('user');
$q->option('distinct');
$q->field('birthday');
$birthdays = $q->getRows();

Other posibility is to set options for delete or insert:

$q->option('delayed', 'insert');

// or

$q->option('ignore', 'insert');

See your SQL capabilities for additional options (low_priority, delayed, high_priority, ignore)

Update Query

Set Conditions

Same syntax as for Select Query.

Set value to a field

Same syntax as for Insert Query.

Other settings

Limit and Order are normally not included to avoid side-effects, but you can
modify $templateUpdate to include those tags.

Delete Query

Set Conditions

Same syntax as for Select Query.

Other settings

Limit and Order are normally not included to avoid side-effects, but you can
modify $templateUpdate to include those tags.

Dropping attributes

If you have called where() several times, there is a way to remove all the
where clauses from the query and start from beginning:

	
Query::reset($tag)

	
	Parameters

	
	$tag (string) – part of the query to delete/reset.

Example:

$q
 ->table('user')
 ->where('name', 'John');
 ->reset('where')
 ->where('name', 'Peter');

// where name = 'Peter'

Other Methods

	
Query::dsql($defaults)

	Use this instead of new Query() if you want to automatically bind query
to the same connection as the parent.

	
Query::expr($template, $arguments)

	Method very similar to :php:method:`Connection::expr` but will return a
corresponding Expression class for this query.

	
Query::exprNow($precision)

	Method will return current_timestamp(precision) sub-query.

	
Query::option($option, $mode)

	Use this to set additional options for particular query mode.
For example:

$q

->table(‘test’)
->field(‘name’)
->set(‘name’, ‘John’)
->option(‘calc_found_rows’) // for default select mode
->option(‘ignore’, ‘insert’) // for insert mode;

$q->executeQuery(); // select calc_found_rows name from test
$q->mode(‘insert’)->executeStatement(); // insert ignore into test (name) values (name = ‘John’)

	
Query::_setArgs($what, $alias, $value)

	Internal method which sets value in Expression::args array.
It doesn’t allow duplicate aliases and throws Exception in such case.
Argument $what can be ‘table’ or ‘field’.

	
Query::caseExpr($operand)

	Returns new Query object with CASE template.
You can pass operand as parameter to create SQL like
CASE <operand> WHEN <expression> THEN <expression> END type of SQL statement.

	
Query::caseWhen($when, $then)

	Set WHEN condition and THEN expression for CASE statement.

	
Query::otherwise($else)

	Set ELSE expression for CASE statement.

Few examples:

	$s = $this->q()->caseExpr()

	->caseWhen([‘status’, ‘New’], ‘t2.expose_new’)
->caseWhen([‘status’, ‘like’, ‘%Used%’], ‘t2.expose_used’)
->caseElse(null);

case when “status” = ‘New’ then “t2”.”expose_new” when “status” like ‘%Used%’ then “t2”.”expose_used” else null end

	$s = $this->q()->caseExpr(‘status’)

	->caseWhen(‘New’, ‘t2.expose_new’)
->caseWhen(‘Used’, ‘t2.expose_used’)
->caseElse(null);

case “status” when ‘New’ then “t2”.”expose_new” when ‘Used’ then “t2”.”expose_used” else null end

Properties

	
property Query::$mode

	Query will use one of the predefined “templates”. The mode will contain
name of template used. Basically it’s array key of $templates property.
See Query Modes.

	
property Query::$defaultField

	If no fields are defined, this field is used.

	
property Query::$templateSelect

	Template for SELECT query. See Query Modes.

	
property Query::$templateInsert

	Template for INSERT query. See Query Modes.

	
property Query::$templateReplace

	Template for REPLACE query. See Query Modes.

	
property Query::$templateUpdate

	Template for UPDATE query. See Query Modes.

	
property Query::$templateDelete

	Template for DELETE query. See Query Modes.

	
property Query::$templateTruncate

	Template for TRUNCATE query. See Query Modes.

Quickstart

When working with DSQL you need to understand the following basic concepts:

Basic Concepts

	Expression (see expr)

	Expression object, represents a part of a SQL query. It can
be used to express advanced logic in some part of a query, which
Query itself might not support or can express a full statement
Never try to look for “raw” queries, instead build expressions and think
about escaping.

	Query (see query)

	Object of a Query class can be used for building and executing
valid SQL statements such as SELECT, INSERT, UPDATE, etc. After creating
Query object you can call various methods to add “table”,
“where”, “from” parts of your query.

	Connection

	Represents a connection to the database. If you already have a PDO object
you can feed it into Expression or Query, but
for your comfort there is a Connection class with very little
overhead.

Getting Started

We will start by looking at the Query building, because you do
not need a database to create a query:

$query = $connection->dsql();

Once you have a query object, you can add parameters by calling some of it’s
methods:

$query
 ->table('employees')
 ->where('birth_date', '1961-05-02')
 ->field('count(*)');

Finally you can get the data:

$count = $query->getOne();

While DSQL is simple to use for basic queries, it also gives a huge power and
consistency when you are building complex queries. Unlike other query builders
that sometimes rely on “hacks” (such as method whereOr()) and claim to be useful
for “most” database operations, with DSQL, you can use DSQL to build ALL of your
database queries.

This is hugely beneficial for frameworks and large applications, where
various classes need to interact and inject more clauses/fields/joins into your
SQL query.

DSQL does not resolve conflicts between similarly named tables, but it gives you
all the options to use aliases.

The next example might be a bit too complex for you, but still read through and
try to understand what each section does to your base query:

// Establish a query looking for a maximum salary
$salary = $connection->dsql();

// Create few expression objects
$eMaxSalary = $salary->expr('max(salary)');
$eMonths = $salary->expr('TimeStampDiff(month, from_date, to_date)');

// Configure our basic query
$salary
 ->table('salary')
 ->field(['emp_no', 'max_salary' => $eMaxSalary, 'months' => $eMonths])
 ->group('emp_no')
 ->order('-max_salary')

// Define sub-query for employee "id" with certain birth-date
$employees = $salary->dsql()
 ->table('employees')
 ->where('birth_date', '1961-05-02')
 ->field('emp_no')
 ;

// Use sub-select to condition salaries
$salary->where('emp_no', $employees);

// Join with another table for more data
$salary
 ->join('employees.emp_id', 'emp_id')
 ->field('employees.first_name');

// Finally, fetch result
foreach ($salary as $row) {
 echo 'Data: ' . json_encode($row) . "\n";
}

The above query resulting code will look like this:

SELECT
 `emp_no`,
 max(salary) `max_salary`,
 TimeStampDiff(month, from_date, to_date) `months`
FROM
 `salary`
JOIN
 `employees` on `employees`.`emp_id` = `salary`.`emp_id`
WHERE
 `salary`.`emp_no` in(select `id` from `employees` where `birth_date` = :a)
GROUP BY `emp_no`
ORDER BY max_salary desc

:a = "1961-05-02"

Using DSQL in higher level ORM libraries and frameworks allows them to focus on
defining the database logic, while DSQL can perform the heavy-lifting of query
building and execution.

Creating Objects and PDO

DSQL classes does not need database connection for most of it’s work. Once you
create new instance of Expression or Query you can
perform operation and finally call Expression::render() to get the
final query string with params:

use Atk4DataPersistenceSqlQuery;

$q = (new Query())->table(‘user’)->where(‘id’, 1)->field(‘name’);
[$query, $params] = $q->render();

When used in application you would typically generate queries with the
purpose of executing them, which makes it very useful to create a
Connection object. The usage changes slightly:

$c = Atk4\Data\Persistence\Sql\Connection::connect($dsn, $user, $password);
$q = $c->dsql()->table('user')->where('id', 1)->field('name');

$name = $q->getOne();

You no longer need “use” statement and Connection class will
automatically do some of the hard work to adopt query building for your
database vendor.
There are more ways to create connection, see `Advanced Connections`_ section.

The format of the $dsn is the same as with for
DBAL connection [https://www.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html].
If you need to execute query that is not supported by DSQL, you should always
use expressions:

$tables = $c->expr('show tables like []', [$likeStr])->getRows();

DSQL classes are mindful about your SQL vendor and it’s quirks, so when you’re
building sub-queries with Query::dsql, you can avoid some nasty
problems:

$sqliteConnection->dsql()->table('user')->mode('truncate')->executeStatement();

The above code will work even though SQLite does not support truncate. That’s
because DSQL takes care of this.

Query Building

Each Query object represents a query to the database in-the-making.
Calling methods such as Query::table or Query::where
affect part of the query you’re making. At any time you can either execute your
query or use it inside another query.

Query supports majority of SQL syntax out of the box.
Some unusual statements can be easily added by customizing template for specific
query and we will look into examples in Extending Query Class

Query Mode

When you create a new Query object, it is going to be a SELECT
query by default. If you wish to execute update operation instead, you
cam simply call Query::mode to change it. For more information
see Query Modes.
You can actually perform multiple operations:

$q = $c->dsql()->table('employee')->where('emp_no', 1234);
$backupData = $q->getRows();
$q->mode('delete')->executeStatement();

A good practice is to re-use the same query object before you branch out and
perform the action:

$q = $c->dsql()->table('employee')->where('emp_no', 1234);

if ($confirmed) {
 $q->mode('delete')->executeStatement();
} else {
 echo 'Are you sure you want to delete ' . $q->field('count(*)') . ' employees?';
}

Fetching Result

When you are selecting data from your database, DSQL will prepare and execute
statement for you. Depending on the connection, there may be some magic
involved, but once the query is executed, you can start streaming your data:

foreach ($query->table('employee')->where('dep_no', 123) as $employee) {
 echo $employee['first_name'] . "\n";
}

When iterating you’ll have DoctrineDBALResult. Remember that DQSL can support vendors,
$employee will always contain associative array representing one row of data.
(See also `Manual Query Execution`_).

Results

When query is executed by Connection or
PDO [http://php.net/manual/en/pdo.query.php], it will return an object that
can stream results back to you. The PDO class execution produces a
`Doctrine\DBAL\Result`_ object which
you can iterate over.

If you are using a custom connection, you then will also need a custom object
for streaming results.

The only requirement for such an object is that it has to be a
Generator [http://php.net/manual/en/language.generators.syntax.php].
In most cases developers will expect your generator to return sequence
of id => hash representing a key/value result set.

write more

Transactions

When you work with the DSQL, you can work with transactions. There are 2
enhancements to the standard functionality of transactions in DSQL:

	You can start nested transactions.

	You can use Connection::atomic() which has a nicer syntax.

It is recommended to always use atomic() in your code.

	
class Connection

	

	
Connection::atomic($callback)

	Execute callback within the SQL transaction. If callback encounters an
exception, whole transaction will be automatically rolled back:

$c->atomic(function () use ($c) {
 $c->dsql('user')->set('balance = balance + 10')->where('id', 10)->mode('update')->executeStatement();
 $c->dsql('user')->set('balance = balance - 10')->where('id', 14)->mode('update')->executeStatement();
});

atomic() can be nested.
The successful completion of a top-most method will commit everything.
Rollback of a top-most method will roll back everything.

	
Connection::beginTransaction()

	Start new transaction. If already started, will do nothing but will increase
transaction depth.

	
Connection::commit()

	Will commit transaction, however if Connection::beginTransaction
was executed more than once, will only decrease transaction depth.

	
Connection::inTransaction()

	Returns true if transaction is currently active. There is no need for you to
ever use this method.

	
Connection::rollBack()

	Roll-back the transaction, however if Connection::beginTransaction
was executed more than once, will only decrease transaction depth.

Warning

If you roll-back internal transaction and commit external
transaction, then result might be unpredictable.
Please discuss this https://github.com/atk4/dsql/issues/89

 nav.xhtml

 Table of Contents

 		
 Agile Data Documentation

 		
 Overview

 		
 Simple to learn

 		
 Not a traditional ORM

 		
 Concern Separation

 		
 Class: Field

 		
 Class: Model

 		
 Class: Persistence

 		
 Code Layers

 		
 Domain-Model Code

 		
 Persistence-specific code

 		
 Generic Persistence-code

 		
 Persistence Scaling

 		
 Quickstart

 		
 Requirements

 		
 Core Concepts

 		
 Persistence Domain vs Business Domain

 		
 Class vs In-Line definition

 		
 Model State

 		
 Getting Started

 		
 Adding Fields

 		
 Table Joins

 		
 Understanding Persistence

 		
 References between Models

 		
 One to Many

 		
 Many to Many

 		
 One to One

 		
 Implementation of References

 		
 Actions

 		
 Aggregation actions

 		
 Field-reference actions

 		
 Advanced Use of Actions

 		
 Expressions

 		
 Conclusion

 		
 Introduction to Architectural Design

 		
 The Domain Layer Scope

 		
 The Danger of Raw Queries

 		
 Purity levels of Domain code

 		
 Domain Logic

 		
 Domain Models

 		
 Domain Model Methods

 		
 Domain Model Fields

 		
 Domain Model Relationship

 		
 Persistence backed Domain Logic

 		
 ID Field

 		
 Persistence-specific Code

 		
 Domain Model Expressions

 		
 Persistence Hooks

 		
 DataSet Declaration

 		
 Domain Conditions

 		
 Related DataSets

 		
 Domain Model Actions

 		
 Unique Features of Persistence Layer

 		
 Model

 		
 Understanding Model

 		
 Model object = Data Set

 		
 Model object = meta information

 		
 Domain vs Persistence

 		
 Good naming for a Model

 		
 Initialization

 		
 Fields

 		
 Actions

 		
 Hooks

 		
 Inheritance

 		
 Associating Model with Database

 		
 Populating Data

 		
 Working with selective fields

 		
 Setting and Getting active record data

 		
 Title Field, ID Field and Model Caption

 		
 ID Field

 		
 Title Field

 		
 Model Caption

 		
 Setting limit and sort order

 		
 Typecasting

 		
 Value types

 		
 Undefined type

 		
 Type of IDs

 		
 Supported types

 		
 Types and UI

 		
 Serialization

 		
 Array and Object types

 		
 Loading and Saving (Persistence)

 		
 Associating with Persistence

 		
 Inserting Record with a specific ID

 		
 Type Converting

 		
 Strict Types an Normalization

 		
 Typecasting

 		
 Validation

 		
 Multi-column fields

 		
 Dates and Time

 		
 Customizations

 		
 Duplicating and Replacing Records

 		
 Create copy of existing record

 		
 Duplicate then save under a new ID

 		
 Working with Multiple DataSets

 		
 Cloning versus New Instance

 		
 Looking for duplicates

 		
 Archiving Records

 		
 Working with Multiple Persistencies

 		
 Creating Cache with Memcache

 		
 Using Read / Write Replicas

 		
 Archive Copies into different persistence

 		
 Store a specific record

 		
 Actions

 		
 Action Types

 		
 SQL Actions

 		
 SQL Actions on Linked Records

 		
 Action Matrix

 		
 Fetching results

 		
 Iterate through model data

 		
 Keeping models

 		
 Raw Data Fetching

 		
 Fetching data through action

 		
 Comparison of various ways of fetching

 		
 Field

 		
 Purpose of Field

 		
 Field Type

 		
 Basic Properties

 		
 UI Presentation

 		
 Conditions and DataSet

 		
 Basic Usage

 		
 Operations

 		
 Multiple Conditions

 		
 Adding OR Conditions

 		
 Defining your classes

 		
 Vendor-dependent logic

 		
 Field Matching

 		
 Expression Matching

 		
 SQL Expression Matching

 		
 Custom Parameters in Expressions

 		
 Expression as first argument

 		
 Advanced Usage

 		
 Model Scope

 		
 Conditions on Referenced Models

 		
 SQL Extensions

 		
 Default Model Classes

 		
 SQL Field

 		
 SQL Reference

 		
 Expressions

 		
 Transactions

 		
 Custom Expressions

 		
 Actions

 		
 Action: select

 		
 Action: count

 		
 Action: field

 		
 Action: fx

 		
 Stored Procedures

 		
 Compatibility Warning

 		
 as a Model method

 		
 as a Model Field

 		
 as an Action

 		
 as a Temporary Table

 		
 as an Model Source

 		
 Static Persistence

 		
 Usage

 		
 Saving Records

 		
 References

 		
 Persistence

 		
 Safety and Performance

 		
 hasMany Reference

 		
 Dealing with many-to-many references

 		
 Dealing with NON-ID fields

 		
 Concatenating Fields

 		
 Add Aggregate Fields

 		
 Available Aggregation Functions

 		
 Aggregate Expressions

 		
 hasMany / refLink / refModel

 		
 hasOne reference

 		
 Traversing loaded model

 		
 Traversing DataSet

 		
 Importing Fields

 		
 Importing hasOne Title

 		
 User-defined Reference

 		
 Reference Discovery

 		
 Deep traversal

 		
 Reference Aliases

 		
 Various ways to specify options

 		
 References with New Records

 		
 Reference Classes

 		
 Expressions

 		
 Defining Expression

 		
 No-table Model Expression

 		
 Expression Callback

 		
 Model Reloading after Save

 		
 Model from multiple joined tables

 		
 Join Basics

 		
 Strong and Weak joins

 		
 Join relationship definitions

 		
 Method Proxying

 		
 Create and Delete behavior

 		
 Implementation Detail

 		
 SQL-specific joins

 		
 Implementation Details

 		
 Specifying complex ON logic

 		
 Model Aggregates

 		
 Grouping

 		
 Hooks

 		
 Model Operation Hooks

 		
 Example with beforeSave

 		
 Arguments

 		
 Interrupting

 		
 Insert/Update Hooks

 		
 beforeSave, afterSave Hook

 		
 Loading, Deleting

 		
 Hook execution sequence

 		
 How to prevent actions

 		
 onRollback Hook

 		
 Persistence Hooks

 		
 PersistenceSql

 		
 Other Hooks:

 		
 Advanced Topics

 		
 SubTypes

 		
 Best practice for specifying relation type

 		
 Type substitution on loading

 		
 Audit Fields

 		
 Soft Delete

 		
 Soft Delete that overrides default delete()

 		
 Creating Unique Field

 		
 Using WITH cursors

 		
 Creating Many to Many relationship

 		
 1. Create Intermediate Entity - InvoicePayment

 		
 2. Update Invoice and Payment model

 		
 3. How to use

 		
 Creating Related Entity Lookup

 		
 Fallback to default value

 		
 Inserting Hierarchical Data

 		
 Related Record Conditioning

 		
 Narrowing Down Existing References

 		
 Loading and Saving CSV Files

 		
 Setting Up

 		
 Exporting and Importing data from CSV

_static/ajax-loader.gif

_images/bd-vs-pd.png
join
] extend

v

_images/presentation.png
Agile Data

PHP Business Logic Framework

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

